Abstract of algorithm and implementation

Our program (for both track | search and track Il join) is based on a partition-based
algorithm called “Passloin”, which is proposed by us and can fit on arbitrary dataset with not only
Edit Distance constraints but also other constraints such as Jaccard.

The basic idea of “Passloin” is the observation that if the Edit Distance between string R and
string S is no larger than threshold T and string R has already been split into (T + 1) disjoint
segments in some way, S must has a substring which is just same as one of the (T + 1) segments.
Intuitively, we should select all the substrings of S and check them one by one. But by using
“Multi-match-aware Substring Selection” which are introduced in our paper in VLDB 2012, we
can reduce the total number of selected substrings to rather a small amount. So we can build the
index of all the segments and compute the necessary substrings of the input string to obtain the
result. It’s obvious to see that our program can be used in both similarity search and similarity
join operations. Besides, when we get the segment and substring matching pair, we can also
make use of the segment position information to speed up the verification stage.

To prepare for this competition, we have the following enhancements:

1. We integrate two other novel pruning techniques into our original “PassJoin” algorithm:
Content Filter and Effective Indexing Strategy. Content Filter can be used in both tracks
and has significant effect in “reads” dataset. Effective Indexing Strategy can only be used
in track Il and have significant effect on both datasets.

2. We take advantage of the modern computer hardware architecture. First, we parallel
our algorithm and achieve a rather high speed up. Second, we use SSE instruction set
which is only supported by recent x64 CPUs to accelerate the most time critical part of
our program.

3. We notice that the total output file size for “geonames” dataset is really large. So we use
non-locking 10 and control the file lock by ourselves to reduce the I0 waiting time.

4. We notice that the input dataset has duplicated records. So we unique it before

performing join or search and restore the real result in the process of serialization.



