
Database Decay and How to Avoid It

Michael Stonebraker Dong Deng Michael L. Brodie
M.I.T. Computer Science and Artificial Intelligence Laboratory

{stonebraker,dongdeng,mlbrodie}@csail.mit.edu

Abstract—The traditional wisdom for designing database
schemas is to use a design tool (typically based on a UML or
E-R model) to construct an initial data model for one’s data.
When one is satisfied with the result, the tool will automatically
construct a collection of 3rd normal form relations for the
model. Then applications are coded against this relational
schema. When business circumstances change (as they do
frequently) one should run the tool again to produce a new
data model and a new resulting collection of tables. The new
schema is populated from the old schema, and the applications
are altered to work on the new schema, using relational views
whenever possible to ease the migration. In this way, the
database remains in 3rd normal form, which represents a
“good” schema, as defined by DBMS researchers. “In the
wild”, schemas often change once a quarter or more often,
and the traditional wisdom is to repeat the above exercise for
each alteration.

In this paper we report that the traditional wisdom appears
to be rarely-to-never followed for large, multi-department
applications. Instead DBAs appear to attempt to minimize
application maintenance (and hence schema changes) instead
of maximizing schema quality. This leads to schemas which
quickly diverge from E-R or UML models and actual database
semantics tend to drift farther and farther from 3rd normal
form. We term this divergence of reality from 3rd normal form
principles database decay. Obviously, this is a very undesirable
state of affairs, and should be avoided if possible.

The paper continues with tactics to slow down database
decay. We argue that the traditional development methodology,
that of coding applications in ODBC or JDBC, is at least
partly to blame for decay. Hence, we propose an alternate
methodology that should be more resilient to decay.

1. Introduction

There has been significant on-going research into
schema design methodologies for at least the 40 years since
Peter Chen wrote his pioneering paper [1]. There has been
work on design paradigms [2], [3], schema evolution [4],
[5], model management [6], [7], and reports on a variety of
commercial offerings [8], [9], [10]. In our opinion, much
of this work is misguided, as we explain in this paper,
because it focuses on the wrong metrics. Specifically, the re-
search work focuses on constructing and maintaining “good”
schemas. Instead, it appears that most large enterprises
actually care about minimizing application maintenance of

existing production systems. That causes them to utilize
“bad” schemas, and generally to allow “database decay”.
Our assertion is based on conversations with nearly twenty
Database Administrators (DBAs) at three very large enter-
prises.

The purpose of this paper is to explain why decay
occurs, and then to explore tactics that minimize database
decay. In our opinion, the most significant contributing
factor is the development methodology that is traditionally
employed in large organizations, that of coding applications
using ODBC/JDBC. Hence, we propose a different method-
ology that is more resilient to decay.

The rest of the paper is organized as follows. In Section 2
we explore the environment we see in most large enterprises.
This serves to frame the reasons for database decay, which
we explain in Section 3. Sections 4 and 5 then turn to
antidotes for decay. In Section 4 we consider defensive
database design and application construction, and show how
this can help. Section 5 then explores a design paradigm that
is more resilient to decay.

2. The Design Environment in Large
Organizations

2.1. Longevity

In this section we explain the environment found in
most large organizations. First, as has been pointed out by
many authors, databases last for a long time. What is less
well known is the frequency with which business conditions
force them to change. New applications for the same data,
changed business requirements for the existing applications
and mergers and acquisitions (M&A) all contribute to fre-
quent changes. As a figure of merit, we assume databases
change once per quarter, although the data in [11] suggests
it is even more frequent.

2.2. Decentralization

Researchers often assume that a database is controlled
by a DBA, who is embedded in the application group that is
writing or maintaining the applications that access a given
database, as noted in Figure 1. We call this model “central-
ization” as all aspects of database design and deployment are
controlled in one place. Although there are examples of this
organization, especially with small-to-midsize applications,

Application	Group
with	embedded	DBA

Database

Assumed	Enterprise	Organization
Figure 1. Assumed Enterprise Organization

it is unusual for large systems to be developed in this
fashion. Instead there are several application groups, each
reporting to a different boss, and responsible for writing
some piece of the overall application, as noted in Figure 2.
For example, an enterprise might have billing, procurement,
and collections departments, each with a programming team.
The DBA for the database could be in one of the partic-
ipating departments or he could report to central IT. For
generality, we show the DBA separate from the application
groups in Figure 2. One should think of this as “decentral-
ized” development.

App	Group	K

Database

More	Typical	Enterprise	Organization

App	Group	1

.		
DBA

Figure 2. More Typical Enterprise Organization

Initially, there is a clean sheet of paper, and the various
groups build their applications, often with different delivery
dates. Moreover, at the time that the first department goes
“live”, other departments may not even have identified their
requirements. This leads to a phased design and rollout.
After initial deployment, the maintenance budget for each
portion of the application is invariably controlled by the
individual departments. Hence, any application maintenance
due to a schema change must be coordinated with multiple
departments, each with their own priorities.

In this paper, we assume a decentralized environment
for application management.

2.3. Kinds of Changes

Another dimension in enterprise environments concerns
the kinds of changes that occur over time. Changes can
either preserve semantics or not. A typical example of the
first type is to split apart a table, such as:

Example-1(key, att1, · · · , attn)

into two tables:

Example-2(key, att1, · · · , attk)
Example-3(key, attk+1, · · · , attn)

Specifically, one collection of attributes might deal with
an employee’s personal life while the other deals with work-
related matters. Semantic clarity would result from such a
split, which can be readily inverted by performing a join.
In this case, it is conceivable to make the change and map
all queries and updates from the old schema to the new
one. As such, application maintenance can be completely
avoided, and the work in Prism++ [11] indicates how to do
this when the schema changes in specific ways.

On the other hand, there are many changes that result
from changed business conditions. For example, an enter-
prise might require that each part be bought from a single
supplier. At some point the CFO might decide that the
enterprise could save money by having different suppliers
in the various regions. As such, a relationship between parts
and suppliers that was previously 1−N has been changed to
being M−N. In this case, application maintenance may be
unavoidable.

As we will explain in the next section, DBAs tend
to avoid making unnecessary changes. Hence, semantics
preserving changes are usually optional and are avoided “in
the wild”. Hence, in this paper we will focus on schema
changes which change the semantics of the applications.

In summary, we focus on decentralized application de-
velopment and on schema changes which alter the semantics
of at least some of the applications. In the next section, we
explain why the traditional schema methodology fails under
these conditions.

3. Why Conventional Database Design Fails

3.1. The Traditional Methodology

The conventional wisdom, which dates from the 1970’s,
is to perform logical data modeling using an Entity-
Relationship (E-R) or UML tool. The result is a graph where
entities with their attributes (as nodes) are connected by
relationships with their attributes (as arrows). Once the DBA
is satisfied with his graph, he can push a button in a variety
of current day tools to produce the following relational
schema:

• A table for each entity along with its attributes.
• A table for each M−N relationship along with its

attributes.
• For each 1−N relationship, add a foreign key to the

“N side” entity along with any attributes of the 1−N
relationship.

Consider, for example the E-R diagram in Figure 3:

Part (P_no, P_color, P_size)

1 Supply (qty) N

Supplier (S_no, S_region)

Figure 3. A Typical E-R diagram

Figure 3 shows two entities, Supplier and Part, along
with a 1−N relationship indicating which supplier supplies
which parts. In this case, we specify that the relationship is
1−N, i.e. each part is supplied by a single supplier. Any E-R
tool will produce the following two tables for this diagram:

Supplier (S_no, S_region)
Part (P_no, P_color, P_size, S_no, qty)

Initial TablesFigure 4. Initial Tables

There is a table for each entity, and the relationship
is encoded in the foreign key S no with its attribute qty.
This collection of tables is in 3rd normal form, and is
thought by DBMS professionals to be a “good” schema.
Hence, this relational schema is defined to a DBMS and the
application is coded, presumably in JDBC or ODBC, against
this schema. If, for some reason, the data or the business
logic changes, then the E-R diagram is updated, causing the
physical schema to change to a new one. However, over
time the database remains in 3rd normal form by following
this methodology. Application maintenance can be lightened
or eliminated by using the view subsystem in present day
DBMSs. Hence, the previous schema can be defined as
a view so that previously written programs use the same
schema they were written for, and thereby continue to run.

3.2. Why the Traditional Methodology Fails

In our simplified world, suppose applications are written
in a decentralized way. For example, the attributes in the Part
table could be specified by engineering. Suppliers could be
chosen by finance, and procurement could be charged with
picking the qty to be supplied.

A transaction from engineering could be:

T1: Add a new part to the Part table, with its associated
attributes

A transaction from finance could be:

T2: Delete supplier XXX

And one from procurement could be:

T3: Change the qty supplied for Part XXX to YYY

It is straightforward to implement this collection of
transactions as applications A1, A2 and A3. Of course, a
real deployment would be more complex, but this simplified
one will serve our purposes. The result is a collection of pro-
duction applications running against a production database.

Now, suppose the company makes a strategic decision
that each part that it purchases may come from more than
one supplier, as long as the suppliers are in a different
region. Maybe the goal is to stimulate competition; “in
the wild” such modifications of business conditions occur
regularly, as noted in Section 2. This change of business
logic impacts our E-R diagram. Specifically, it changes the
relationship, Supply, from 1−N to M−N.

Following the traditional wisdom, the DBA will change
the E-R diagram appropriately, and E-R tools will produce
a new physical design, as follows:

Supplier (S_no, S_region)
Part (P_no, P_color, P_size)

Supply (P_no, S_no, qty)

Final Tables
Figure 5. Final Tables

The standard wisdom continues by stating that one
should define the initial tables (Figure 4) as views on top
of the final set of tables (Figure 5). Notice that Supplier is
unchanged while Old Part is a join of New Part and New
Supply. It is straightforward to define these views in many
SQL DBMSs. There are three problems with this approach:
Problem 1: The views, so defined, are unlikely to be up-
datable. This could happen because of semantic ambiguity
or because of shortcomings in the view support system. For
example, in SQL Server, one cannot insert into a view that
is derived from multiple base tables. Other DBMSs have
similar restrictions. In our example, T1 will fail on most
DBMSs, because it is inserting a record into a view, and
this operation is disallowed in all view subsystems that we
are familiar with.
Problem 2: The semantics of the application may change.
For example, T3 in the original schema updates the qty sup-
plied for the only supplier of Part XXX. After the change,
there may be multiple suppliers of Part XXX. Should the
application change qty for all suppliers or only one. If only
one, then which one? In effect, a human has to examine T3
to decide what to do.

Hence, the unintended consequence of these problems
is that applications across the enterprise must be found and
perhaps corrected. There are two dramatic consequences of
this course of action.
Consequence #1. There is substantial risk. ALL of the
applications must be found and corrected, and then all must
be cutover at the same time. Usually, a few will be missed,
causing downstream failures. Few DBAs want to take on
this risk.
Consequence #2: There is often no budget for global
maintenance. In other words, the organization making the
change does not have budgeted resources to fix the issues
in other technical groups, so it is impractical to proceed in
this direction.

As a result, a very popular tactic is to leave the schema
in Figure 4 intact. Instead, the changed business logic is
supported without changing the schema. One way to accom-
plish this is to duplicate parts data in the Part table for each
supplier that supplies the part. Therefore, if two suppliers
both supply part XXX, then there will be two records in
the Part table, one for each supplier, each with a different
qty and region. In effect, we just dropped the primary-key-
foreign-key (PK-FK) constraint on S no in the Part table
and converted the key of the Part table to be (P no, S no,

S region). The result, which we call the kluge, is not in
3rd normal form, so professionals would consider this a bad
design. However, it has a huge advantage:

The applications A1−A3 will continue to run.

Although we have moved to an inferior data base design,
we have lowered or eliminated the need for application
maintenance, so most enterprise DBAs would claim that this
is the preferred strategy. Specifically, T1−T3 will continue
to function, and there is no ambiguity about the execution
of T3; the qty supplied is changed for all suppliers on Part
XXX. To avoid application maintenance, however, a third
problem must be addressed.
Problem 3: Applications have to avoid running certain
problematic SQL commands. For example, suppose there
is a transaction T4 as follows:

T4: Find the qty supplied for a given part

T4 will fail when we move from Figure 4 to Figure
5, because we must add an aggregation operation to the
query in order to get the correct answer. In addition, the
same aggregation is required in the replication alternative
noted above. Hence, the absence of application maintenance
is dependent on avoiding certain constructs. We term this
defensive programming and we discuss this option in
Section 4.

Note clearly that leaving the schema untouched results
in an E-R diagram for the database that is invalid. In fact,
there is no E-R diagram that will produce the kluge schema.
The minute a DBA leaves an earlier schema intact, so as to
avoid risk, the E-R diagram diverges from reality. We have
talked to nearly twenty DBAs, and all report that they do
not use E-R tools, because they do not reflect reality in
the database. Instead all report performing database design
on the tables themselves. Several DBAs indicated that they
use E-R tools for the initial (green field) design, and then
abandon them during the downstream maintenance phase.

We have observed that real DBAs go to considerable
effort to avoid changing the initial schema. Hence, their true
objective appears to be to minimize or eliminate application
maintenance. This is very different than the objective of
maintaining a good logical data base design. A consequence
of this state of affairs is that few DBAs will make any
optional changes. After all, this just entails risk. As a result,
schema changes which preserve semantics are typically
avoided, since they are optional. Therefore, we will look
at database design very differently than has been done in
the past, as will be shown in Sections 4 and 5.

In summary, our thesis is the following. DBAs avoid
schema changes, if at all possible, since they entail risk.
DBAs avoid semantics-preserving (and therefore optional)
changes, since they entail risk. Essentially all modifications
that change the semantics of the application will avoid main-
tenance for some SQL commands and not others. Therefore,
defensive programming is highly desirable to avoid prob-
lematic SQL. Otherwise, a DBA will have to examine all
transactions to see which ones can be run intact and which
ones require maintenance. As a result, databases decay over

time, and the schema drifts further and further from one that
obeys the standards of good design.

3.3. Other Examples

In this section we give several additional examples of
changes that cause problems.

3.3.1. Changing a Relationship from M-N to 1-N. Con-
sider starting with the design in Figure 5. Suppose enterprise
management legislates that there will be a single supplier for
each part. Obviously, the extra suppliers must be identified
and eliminated. This will almost certainly take weeks-to-
months to accomplish; in the meantime, the schema cannot
change. In this process, the extra records will gradually be
eliminated. At the conclusion of this exercise, the schema
can be converted to that of Figure 4. However, this is a
dangerous step as Figure 5 will need to be defined as a view,
and may not be updatable. Hence, a more likely solution is
to leave Figure 5 intact, but modify the key of the Supply
table from (S no, P no) to (P no). Again, the E-R diagram
for the schema is incorrect. However, all applications will
continue to run.

3.3.2. Dead Attributes. Now, suppose one of the applica-
tions decides to add an attribute to the Supplier entity, say
S rating. The conventional wisdom is to add this attribute
to the Supplier table, producing New Supplier. Then, define
Supplier as a view on New Supplier. Now suppose the
application stops using the S rating attribute. The appro-
priate action to take would be to drop the attribute from the
stored table. Depending on the system being used, this could
require a (perhaps substantial) reorganization to remove the
offending attribute. More seriously, other applications may
fail because they read S ratings, even if they don’t actually
use it in their logic. As noted in Section 2, such a change is
rarely taken by DBAs. Instead, a typical action is to simply
leave the attribute in the database, rendering it a “ghost”
or “dead” attribute. Again, the E-R diagram becomes more
distant from application reality.

Now suppose the application which deleted S ratings
decides to add a new attribute, say S date incorporated.
As you can imagine, the easiest thing for the developer
to do is simply reuse the S ratings field. Again, the E-R
diagram drifts further from the truth. After a few of these
modifications, you can imagine that developers simply don’t
pay attention to the E-R diagram, as it bears no resemblance
to reality.

Now consider a second application that uses the Supplier
schema and wants to add a different attribute to Supplier,
say S terms, to indicate what payment terms are expected
by the supplier. This application wishes to add an attribute
to Supplier, which is now a view. AddAttribute is not sup-
ported by any view subsystem we are familiar with. Hence,
this sequence of two schema operations fails. A common
solution is to add a few phantom attributes to the schema,
which may be used for downstream maintenance, such as
in the above example.

3.3.3. Problems with Timing. Return to the schema of Fig-
ure 4. As noted earlier, there may be three departments, e.g.,
engineering, finance and procurement, that are responsible
for the composite application. Engineering may be 3 months
ahead of finance, in which case the Part table is populated,
but Supplier and qty information has yet to be filled in.
Obviously, the E-R diagram is currently incomplete, and
certainly cannot be trusted.

Clearly, a complete application will have dependencies
of this sort. To deal with this situation, there must be
information stored somewhere about these dependencies and
the timing for their resolution. It is certainly plausible to put
such information into an E-R diagram, but one now has a
cross between a project management system and a database
design tool.

3.3.4. Mergers and Acquisitions. Now suppose the com-
pany in question buys another company, B, and merges the
two Supplier databases. The obvious way to do this is to add
a field to the Supplier table called “origin”. Then, we define
two views one with the suppliers from B and another view
with the remainder. Effectively, the real database has a new
key (S no, origin). However, both views have an effective
key of S no, so both original applications can continue to
run.

However, this elegant solution is rarely possible because
of semantic mismatches between the two Supplier databases.
For example, suppose the two Supplier tables have differ-
ent semantics for S region. For example, one table might
use (City name, State abbreviation) while the second uses
State name. If we merge the two tables and define a view as
suggested above, then the two original applications will con-
tinue to run. However, new applications on the merged table
will assuredly fail. Although the data type of S region can
be a string, it is the union of the two originating data types.
Any command with a predicate on S region will thereby
fail, unless application logic is made aware of the situation.
Effectively this creates an attribute definition, completely
isolated from the schema, an obviously undesirable state of
affairs.

A more likely tactic would be to leave the two original
tables in the database. The original applications continue
to run. New applications must be coded against two tables
rather than one; however, they are no more difficult to
code than with the other solution. Moreover, an attribute
definition entirely in user code has been avoided.

3.3.5. Performance Problems. If the current schema has
performance problems either because of response time or
throughput issues, then three popular tactics are often em-
ployed. First indexes can be added, dropped or changed.
This has no impact on whether applications continue to run
or not. Hence, it is a benign change. The second is to add a
materialized view (MV) to the database that will deal with
the offending response time issue. If such a MV exists, then
this, too, is a benign change. Of course, there is no free
lunch and the cost of updating the MV must be considered.
Also in many systems MVs are asynchronously updated, so

the MV is fundamentally out of date. The last option, that
of changing the schema, is insidious. Usually, some join is
the offending command, and an option is to pre-join the
involved tables. In the schema of Figure 5, one might run
the following query:

Select Sup.P_no, S.S_region
From Supply S, Supplier Sup
Where Sup.qty > 100 and Sup.S_no = S.S_no

This requires a join between Supply and Supplier, which
may be deemed a performance problem. One can eliminate
this join by converting the schema to that of Figure 6.

Supplier (S_no, S_region)
Part (P_no, P_color, P_size)

Supply (P_no, S_no, qty, S_region)

A Possible Replacement Schema for Figure 5
Figure 6. A Possible Replacement Schema for Figure 5

This schema eliminates the join, by duplicating
S region. Of course, the result is not in 3rd normal form
and does not correspond to any E-R diagram.

3.3.6. Summary. In this section, we have discussed com-
mon schema changes that occur “in the wild”. These were:

• 1−N to/from M−N relationships
• Dead attributes
• Timing problems
• Mergers and acquisitions
• Performance problems

These changes occur regularly, often once a quarter or
more often. After a few of these changes the E-R diagram
is divorced from reality and becomes useless as a design or
documentation tool. Therefore, few DBAs pay any attention
to such E-R diagrams, if they exist at all. This causes
databases to decay, i.e. the schema for the database drifts
further and further from any E-R diagram and further and
further from a “good” design that obeys the various normal
forms. After a while the schema becomes so rotten that no
further changes can realistically be made, and a complete
rewrite is the only way to move forward. Obviously, this
is a lousy state of affairs. The remainder of this paper
suggests tactics to slow down or avoid decay. In Section 4
we explore how to lower the amount of required application
maintenance by using either defensive schemas or defen-
sive application development tactics. In other words, in the
presence of schema decay, these tactics result in applications
that require less maintenance. Then we follow in Section
5 with a totally different application paradigm that should
be more effective at decay prevention. We compare our
approach to related work in Section 6.

However, first we present a non-solution, namely moving
to a higher level of abstraction. For example, why not code
against an E-R diagram rather than a collection of tables?
Unfortunately, this does not solve any of the issues raised
earlier in this section. Specifically, all of the problems either

were caused by the E-R diagram changing or in shortcom-
ings of the relational view system. Neither issue is solved by
changing the abstraction level. However, code maintenance
would be easier, since it is a higher-level notation. A similar
comment would apply to coding in some other higher-level
notation, such as an object model.

Also, any such change would require an entire genera-
tion of DBMSs and tools to convert from ODBC/JDBC to
something else. This is clearly a big issue.

Another possibility is to ask DBMS vendors for schema
versioning. If this existed, it would certainly make changes
easier. However, to avoid application maintenance, a SQL
command on the old version must be automatically mapable
to the new schema. Since this may or may not be the case,
schema versioning will not be a magic bullet.

4. A Better Technique – Defensiveness

In this section, we focus on defensiveness as a tactic in
the presence of the changes we noted in the previous sec-
tions. In Section 4.1, we consider application level tactics,
following in Section 4.2 by schema level tactics.

4.1. Defensive Applications

A first possibility is to use some sort of master data
management (MDM) scheme whereby the names of entities
are stored in an MDM system along with their table names
and attributes. Then, all applications would be expected to
use MDM notation for all DBMS objects, and some of the
view problems are potentially avoidable.

A second thought is to avoid brittle constructs, such as

Select *
From ...

which are challenging in the face of changes in the physical
tables. A little prevention can avoid a lot of downstream
sins. Also, if one is reading JSON data types, one should
always code ultra defensively, since the composition of the
object may well change.

As a final example, if one is retrieving a data element
from the schema in Figure 4, such as the qty supplied for a
given part:

Select qty
From Part where P_no = XXX

then this code will be brittle for changes such as the one
in Figure 5. In this case, the retrieve has to be converted to
an aggregate. However, if we code defensively, for example,
using the following:

Select sum(qty)
From Part where P_no = XXX

then this code will execute correctly on a view defined from
the real schema in Figure 5. Of course, coding defensively
trades lower performance for better resiliency to changes.
An alternate approach is to delegate all such queries to a

companion decision support data warehouse, and keep them
out of the operational system.

The conclusion of this section is to always write code
that is resilient in the face of possible changes to the
underlying tables.

4.2. Defensive Schemas

Obviously, the schema in Figure 5 is a more defensive
one than the schema in Figure 4. At the expense of lower
performance in the case when the relationship is 1−N, it will
support changing the relationship to M−N without any code
changes. For changes that seem plausible off into the future,
one is better off with a defensive schema, since this avoids
a much worse situation if the change occurs. In the case of
the data in Figure 4 a “good” schema will have two tables.
However, a more defensive schema (Figure 5) will have
three tables. Of course, a defensive schema must inevitably
give up on some automatic integrity constraints, such as the
automatic enforcement of a 1−N relationship. Such data
integrity issues must be handled in application logic, which
is considerably more painful than inside the DBMS or by
some sort of Business Rule Management system (BRMS).

The ultimate defensive schema is to decompose every
table into a collection of binary tables of the form:

{(key, attribute)}

This schema will have one table per attribute and will
survive many changes, without the necessity of recoding.
Such schemes are compatible with a key-value (KV) store,
and we will call them “tall and skinny”, as opposed to the
“fat and wide” ones produced by an E-R methodology.

An alternate methodology is to encode all of the binary
tables into a single triple store of the form:

{(entity-id, entity-attribute, entity-value)}

Again, we get a “tall and skinny” representation. For clarity
in the next section, we will consider the KV representation.

Of course, tall and skinny schemas pay a big perfor-
mance price, since assembling a record with K non-key
attributes will require K joins. This will be orders of mag-
nitude slower than the single read required in a standard
schema. Hence, we view a reasonable metric of defensive-
ness to be the number of tables in the schema. More tables
means a more defensive schema, but of course offers lower
performance. In effect, there is a delicate balance between
performance, integrity control and schema defensiveness,
which we crudely model in the next section.

4.3. A Defensiveness Model

Let N be the number of tables in the schema. As noted
above the larger the N the more defensive the schema will
be. Let P be the performance of the schema on the customer
workload. This will have to be estimated, but in general will
be monotonically decreasing in the number of tables in the
schema. Let S be the survivability of the schema to changes

of the sort mentioned in this paper. It is an estimated number
between 0 and 1.

Let the defensiveness of a schema be:

D = S ∗ P ∗N

A good schema will have a large D, and DBAs should strive
to maximize this quantity.

4.4. Surviving the Common Changes

Judicious replication when moving from a 1−N re-
lationship to an M−N relationship can be supported by
defensive programming. One simply assumes there might
be a multiple record return and adds some way to cope
with that occurrence, such as adding an aggregate.

Moving from M−N to 1−N can be accomplished by
changing the key of relationship table and by defensive pro-
gramming. Most previous code should continue to execute
correctly.

The use of phantom attributes, dead attributes, and reuse
of attributes will allow the addition and perhaps subsequent
deletion of attributes to work correctly.

Lastly, avoiding table merge, when one enterprise buys
another, will allow current programs to continue to run,
generating problems for any new code.

Using defensive programming, defensive schemas and
appropriate kluge schemas will allow many popular changes
in business logic to NOT require application maintenance.
This will clearly result in lower maintenance costs than
using the traditional wisdom. Of course, there is no free
lunch and the ultimate cost is database decay.

In the next section we consider an alternative approach
to schema evolution, which will effectively force central-
ization. This technique will allow additional options, not
possible just using defensiveness.

5. A Better Technique−A New Application
Development Paradigm

5.1. Our Proposal

One problem that contributes significantly to database
decay is the decentralization of application development.
It is virtually impossible to figure out the implications of
schema changes on applications, since they are in mul-
tiple departments in the enterprise. Obviously, one needs
to decentralize such development, since the business logic
has to be implemented by the relevant departments. In the
traditional architecture, this means that SQL interactions are
also decentralized.

Our proposal is to continue to decentralize development
of the business logic, but to centralize SQL interactions.
Figure 7 illustrates our proposal. Here we see the same
K application groups writing business logic as was noted
in Figure 2. However, instead of coding in ODBC/JDBC,
we require them to specify DBMS interactions differently.

App	Group	K

Database

Our	Proposal

App	Group	1

.		
DBA

Middleware

Msg Interface

Figure 7. Our Proposal

Specifically, we require them to use a messaging interface
as noted in Figure 7.

In Figure 7, an application must send a message to a
middleware system in an agreed-upon format. Note that such
a message can be asynchronous (message) or synchronous
(RPC); there are advantages to both options, so we will
choose the asynchronous option for our exposition. There
are many possible formats for such a message; one can
use a web services paradigm, a micro services paradigm, a
remote procedure call paradigm, a stored-procedure DBMS
paradigm, or use one of the popular messaging systems.

Our goal is to prevent database decay by making it
as easy as possible to change the schema to a “good” re-
placement schema and then automatically map the old SQL
commands to their replacements. As a result, we explore an
interface using SQL to express DBMS semantics. However,
nothing in our proposal disallows some other syntax for
DBMS interactions.

Hence, one such message might be:

(Salary Raise, John, 10,000)

Here, the intent is to change John’s salary to $10,000.
The middleware receiving this message in turn executes the
following SQL on behalf of the user:

Update EMP (set salary = 10000)
Where name = ‘John’

and returns a completion code in a separate message. As
you can imagine, the receiver of the message must execute
the purpose of the message by constructing the appropriate
SQL. This design is, of course, not very flexible since an ap-
plication developer with a new requirement must get a new
message approved by the owner of the middleware system.
However, it has one big advantage. If the schema changes,
then the application logic that interacts with the DBMS is
centralized in the middleware message processing system.
As such, it is easier to find the code that must be changed
and then “do the right thing”. In effect, this architecture
centralizes database management commands in what would
otherwise be a decentralized application development world.

In the rest of this section we explore this approach in
more detail. Our design methodology can be summarized as

follows:

1) The DBA uses his favorite mechanism/tool to build
an initial schema, which we term S1.

2) Users then send messages to middleware, and a
DBA implements the actual SQL to support them.
In Section 5.3 we indicate a tool that can help with
SQL composition.

3) The schema is subsequently changed to S2, and
some maintenance may be required. Our goal is
to make this maintenance painless enough that the
DBA will choose to migrate S1 to a “good” schema,
rather than choose a poor one. In this way, he can
prevent or slow down database decay.

4) In the general case, we are moving from Si to Si+1,
and the general problem statement is the following:
We are given an initial schema Si, a collection of
messages, M1, · · · , Mk and corresponding SQL,
Q1, · · · , Qk. The goal is to identify the replacement
SQL, Q1’, · · · , Qk’, with as little effort as possible.

For simplicity, we assume that messages do not commit
transactions as a side effect. A specific commit message
must be generated from an application. Hence, there will be
no discussion in this section of transaction boundaries.

Notice that there are two issues to deal with. First,
there is the question of how to negotiate with the appli-
cation developer to construct the correct SQL that specifies
his business logic. This topic is discussed in Section 5.3.
The second issue, namely how to automatically or semi-
automatically construct the replacement SQL that must be
run following a schema change is treated in Section 5.4.
Section 5.2 specifies some preliminaries that are required
for either solution.

5.2. The Assumed Structure

We assume a transaction processing environment in
which the SQL is limited in scope. Decision support envi-
ronments tend to have much more complex SQL, which may
not be amenable to our proposal. Specifically, we assume the
following:
Entry point: There is an entry point into the database
provided by the application developer. In the example above
this might be “name = John”, which specifies a record (or
records) in some table in the database. We assume that the
application developer specifies whether there should be a
single record matching the entry point or that there can be
multiple records. There may be multiple entry points, but
for simplicity, we assume there is only one.
Target: There is a target of the application, which speci-
fies the record to be updated or retrieved. In the example
above, this would be “salary = 10000”. Again, this must be
provided by the application developer, who also specifies
whether he is expecting one record to qualify or multiple
records. Not surprisingly, there may be multiple targets, but
for simplicity, we assume there is only one. Hence, the entry

point and target can be 1−1, 1−N, M−1 or M−N, and we
call this the application template.
Join path: Since the entry point and the target may be
different tables, there must be some join path that connects
the two. We assume this must be a sequence of PK-FK
relationships. Of course, there may be multiple such paths
in the large schemas of enterprise applications.

We turn now to assisting the DBA with join path selec-
tion. We have built a prototype data stitching system called
Data Civilizer [12], which examines the tables in a database
and finds all PK-FK relationships. These relationships are
edges in a graph whose nodes are tables. In addition, Data
Civilizer can find approximate PK-FK relationships since
data “in the wild” often contains errors. A human adminis-
trator can specify how many errors can be tolerated before
the appropriate edge is invalid. This stitching system can
be run at any time to build this graph anew, based on the
current data in the tables and the current schema.

5.3. Initial SQL Construction

Data Civilizer also contains a discovery component,
whereby the DBA can find columns that contain a specific
value, among other features. This component is detailed in
[12]. Using this component, the DBA can find possible entry
points and targets and then negotiate with the application
developer as to which one(s) meet his needs.

Following this, data stitching can be run to find all
join paths that connect the entry point and target. Filtering
out the ones which have the wrong application template
yields the actual candidates. The DBA can negotiate with
the application developer to decide which join path meets
his needs, after which constructing the actual SQL can be
performed automatically.

5.4. Replacement SQL Construction

We write this section assuming a “just in time” resolu-
tion system. For example, RDBMSs are routinely criticized
for requiring a “schema first” methodology. More recent
“NoSQL engines” support a more flexible “schema later”
policy. In this section we defer the commitment to a schema
until the first execution of a given application message. This
offers ultimate run-time flexibility, and also supports the
possibility of changing the schema in between executions
of a given message.

After initial construction of the appropriate SQL, any
message is marked as “production”, and all subsequent
executions merely perform parameter substitution into the
stored SQL before execution. Over time, messages may
be added or subtracted at will and the above procedure is
followed.

At some later time, the schema is modified using a col-
lection of schema directives and then a bulk copy operation
is activated to populate the new schema from the old one.
When the change is finalized, Data Civilizer is activated and
marks all existing messages as “tentative” and rebuilds its

graph. At this point, we have the old graph, the new graph
and the old SQL for the messages.

When a message is received by middleware in tentative
mode, Data Civilizer first identifies the entry point and target
in the new graph. In general, schema changes are fairly
incremental. Hence, Data Civilizer can match all the tables
in the old path to the new schema. Unless wholesale changes
are made, several of the tables can be matched, and the entry
point and target identified. If necessary, the DBA is asked
to confirm automatic entry point and target identification.
Then Data Civilizer calculates which of the following cases
applies:

a) The original path is unchanged. Hence, there is
no change to the SQL, and the transaction can be
executed unchanged. Note that the path must be
unchanged, as well as the application template.

b) The original path has been removed but there
is a unique replacement path. In this case, data
stitching produces only one path between the end
points of the transaction. Moreover, the replacement
path has the same application template as the orig-
inal path. In this case, the DBA should be asked if
the replacement path is equivalent to the previous
one. If so, the query can be rewritten automatically
and executed.

c) There is a unique replacement path but the
application template has changed. In other words
the replacement path does not have the same
“shape” as the original. In this case, the seman-
tics of the SQL will change, and the DBA must
decide whether the changed semantics are correct
or whether he needs to engage in defensive pro-
gramming or rewrite the SQL to have a different
effect.

d) There are multiple replacement paths. In this
case, a human will be asked which one he wants to
use, and this case devolves to one of the previous
cases.

e) There is no replacement path. A human must
decide what to do.

In this way we perform “just in time (JIT)” message
resolution and processing. As a result, we have moved to
an architecture which we call “schema at run time”. The
architecture in this section is a run-time schema in that the
there is no commitment to a schema until the application is
executed. In fact, the schema can change between executions
of an application. This gives the ultimate in flexibility

However, in realistic scenarios, a DBA would like to
know the impact of his schema changes before making them.
This requires a second mode of operation, which we call
“impact analysis”, which is discussed in Section 5.5

5.5. Impact Analysis Operation

In impact analysis mode, the new schema is defined to
Data Civilizer, but is not implemented. In this case, we have

the old schema, the new schema and the SQL for most (or
all) of the messages. In this case, Data Civilizer does not
have the data to find PK-FK relationships, and these must be
specified by a human. All messages are tested according to
the algorithms in Section 5.4 to generate an impact analysis.
If too much maintenance needed, then the DBA can suggest
a different change or suggest that the change is too disruptive
to be implemented.

5.6. Resolution of the Common Cases

If a relationship changes from 1−N to M−N, then
we get case c) above. A human can decide whether the
automatically generated SQL is correct or must be modified.
Case c) also covers the transition from an M−N relationship
to a 1−N relationship. However, there are transactions that
can be automatically mapped. For example, a query will be
unaffected when we move from M- N to 1−N. As a result,
a human need only look at a subset of the transactions in
this situation.

Dead attributes are covered by case a). In order to work
correctly, we need all applications to be minimalist, i.e. to
request only those fields in records that they actually use.

As a result, the thorny cases of changed semantics (case
c) can be quickly identified and a human can decide what to
do. This can be done incrementally at run time as messages
are executed. Application groups who write the business
logic and user interface code can be isolated from this
process.

6. Related Work

There has been a great deal of work over the past
two decades on database evolution. For example, work on
schema matching (e.g., [7]) and migrating a database from
old to new schema (e.g., Clio [13]) can be leveraged by Data
Civilizer in database migration. However, unlike those solu-
tions that support the development of “good” schemas, Data
Civilizer assumes the new schema will obey the dominant
enterprise objective of minimizing application maintenance.
Hence, it may or may not be a “good” one.

There has also been extensive research on automating
application rewriting due to database evolution, e.g., [11].
This work focuses on semantic-preserving schema changes.
As we noted earlier, DBAs will generally not make such
changes because of application risk. Hence, our work fo-
cuses on changes that do not necessarily preserve application
semantics.

Our research is also focused on “in the wild” manage-
ment and design practices for large enterprise databases.
This is in contrast to [11] for example, which deals with
a public-facing database. Although we recognize that it
is much harder to obtain (often proprietary) experiences
with enterprise data, we claim that it qualitatively changes
the nature of the database evolution problem. Specifically,
it alerted us to the importance of minimizing application
maintenance which led us to a new development paradigm.

Although there are many tools based on more formal
approaches, e.g., [1], [8], [11], [13] we encountered none
of these in use at the enterprises we surveyed. Also, we
chose to focus on a SQL-oriented approach to application
design, because it easily exposes the SQL in use and allows
us to more readily construct or validate replacement SQL
when necessary. This is in contrast to approaches based on
ORMs, web services, or higher level notations, e.g., LinQ
[14], Ruby-on-Rails [15] or Hibernate [16].

7. Next Steps and Conclusions

In this paper we have indicated why database decay
occurs, which ultimately results in a schema so tangled that
further modifications become extremely difficult. Of course,
defensive applications and schemas can help with mainte-
nance issues, but do not impact the fundamental reasons for
decay. It is plausible that moving to the application devel-
opment methodology in Section 5 can slow down decay. We
are currently exploring a collaboration with multiple “in the
wild” application environments. These range from one with
a few hundred tables to one with 1,800 tables. For now,
Section 5 should be considered a proposal to be validated
by future studies in a follow-on paper.

Acknowledgments

We gratefully acknowledge the assistance of the large
enterprise database and application managers and DBAs
who provided data for this research.

References

[1] P. P. Chen, “The entity-relationship model - toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, 1976.

[2] I. Jacobson, G. Booch, and J. E. Rumbaugh, The unified software
development process - the complete guide to the unified process from
the original designers, ser. Addison-Wesley object technology series.
Addison-Wesley, 1999.

[3] P. A. Bernstein and S. Melnik, “Model management 2.0: manipulating
richer mappings,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, Beijing, China, June 12-14,
2007, 2007, pp. 1–12.

[4] C. Curino, H. J. Moon, M. Ham, and C. Zaniolo, “The PRISM work-
wench: Database schema evolution without tears,” in Proceedings of
the 25th International Conference on Data Engineering, ICDE 2009,
March 29 2009 - April 2 2009, Shanghai, China, 2009, pp. 1523–
1526.

[5] X. Li, “A survey of schema evolution in object-oriented databases,” in
TOOLS 1999: 31st International Conference on Technology of Object-
Oriented Languages and Systems, 22-25 September 1999, Nanjing,
China, 1999, pp. 362–371.

[6] S. Melnik, Generic Model Management: Concepts and Algorithms,
ser. Lecture Notes in Computer Science. Springer, 2004, vol. 2967.

[7] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema match-
ing, ten years later,” PVLDB, vol. 4, no. 11, pp. 695–701, 2011.

[8] http://www.erwin.com/products/data-modeler.

[9] http://www.oracle.com/technetwork/developer-tools/datamodeler/
overview/index.html.

[10] https://en.wikipedia.org/wiki/Database Workbench.

[11] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating
the database schema evolution process,” VLDB J., vol. 22, no. 1, pp.
73–98, 2013.

[12] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker,
A. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang,
“The data civilizer system,” in CIDR 2017, Seventh Biennial Confer-
ence on Innovative Data Systems Research, 2017.

[13] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller, L. Popa, and
Y. Velegrakis, “Clio: Schema mapping creation and data exchange,”
in Conceptual Modeling: Foundations and Applications - Essays in
Honor of John Mylopoulos, 2009, pp. 198–236.

[14] http://www.tutorialspoint.com/linq/.

[15] http://www.rubyonrails.org/.

[16] http://www.hibernate.org/orm/.

