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ABSTRACT
Entity extraction (also known as entity recognition) extracts
entities (e.g., person names, locations, companies) from text.
Approximate (dictionary-based) entity extraction is a re-
cent trend to improve extraction quality, which extracts
substrings in text that approximately match predefined en-
tities in a given dictionary. In this paper, we study the
problem of approximate entity extraction with edit-distance
constraints. A straightforward method first extracts all sub-
strings from the text and then for each substring identifies its
similar entities from the dictionary using existing methods
for approximate string search. However many substrings
of the text have overlaps, and we have an opportunity to
utilize the shared computation across the overlaps to avoid
unnecessary duplicate computations. To this end, we pro-
pose a heap-based framework to efficiently extract entities.
We have implemented our techniques, and the experimen-
tal results show that our method achieves high performance
and outperforms existing studies significantly.

Categories and Subject Descriptors
H.2.8 [Database Applications]; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Approximate Entity Extraction, Edit Distance, Heap

1. INTRODUCTION
Dictionary-based entity extraction extracts all the sub-

strings from given text that match predefined entities in a
dictionary. For example, consider text “Maros Hadjilefthe-
riou, Nick Koudas, Divesh Srivastava: Incremental main-
tenance of length normalized indexes for approximate string
matching”, and a dictionary with two entities “Marios Had-

jieleftheriou” and “Nick Koudas”. Dictionary-based en-
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tity extraction extracts the predefined entity “Nick Koudas”
from the text. It has many real applications in the fields
of information retrieval, molecular biology, bioinformatics,
and natural language processing. However, usually text may
contain typographical or orthographical errors [5], especially
the text crawled from the Web. For example, the substring
“Maros Hadjileftheriou” in the above text has typograph-
ical errors. However the traditional (exact) entity extraction
cannot extract this substring from the text, since the sub-
string does not exactly match the predefined entity “Marios
Hadjieleftheriou”. Approximate (dictionary-based) en-
tity extraction is a recent trend to address this problem,
which can extract substrings from the text that approxi-
mately match the predefined entities.

Many similarity functions have been proposed to quantify
the similarity between two strings, such as jaccard similar-
ity, cosine similarity, and edit distance. In this paper, we
study the problem of approximate entity extraction with
edit-distance constraints, which, given a dictionary of enti-
ties, text, and an edit-distance threshold, finds all the sub-
strings from the text that have edit distances to an entity
in the dictionary no larger than the given threshold. For in-
stance, in the above example, approximate entity extraction
can extract the substring “Maros Hadjileftheriou” which
is similar to a predefined entity“Marios Hadjieleftheriou”.

A straightforward method to this problem first extracts
all the substrings from the text, and then for each substring
identifies its similar entities in the dictionary using existing
methods for approximate string search [4]. As many such
substrings have overlaps, this method involves unnecessary
duplicate computations across the overlaps. For example,
consider the above text, we first generate its substrings, such
as “Maros Hadjileftheriou”, “aros Hadjileftheriou nick”, “ros
Hadjileftheriou nick koudas”, then we find their similar en-
tities from the predefined dictionary. We observe that these
substrings have many overlaps, and we have an opportunity
to utilize the shared computation across overlaps to elim-
inate the unnecessary duplicate computations. Although
there have been recent studies on approximate entity ex-
traction [5, 2, 1], they do not focus on using the shared
computation across overlaps to improve performance. To
address this problem, in this paper we propose heap-based
methods which can fully utilize the shared computation.

2. PRELIMINARIES
In this section, we first formalize the problem of approxi-

mate entity extraction with edit-distance constraints. Then
we introduce two existing methods to address this problem.
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2.1 Problem Formulation
Edit Distance: In this paper, we use edit distance to quan-
tify the similarity between two strings. Formally, the edit
distance between two strings r and s, denoted as ed(r, s),
is the minimum number of single-character edit operations
(i.e., insertion, deletion, and substitution) needed to trans-
form r to s. For example, ed(marios, maras) = 2. In this
paper two strings are similar if their edit distance is no
larger than a given edit-distance threshold τ . Based on this
notation, we formalize the problem of approximate entity
extraction with edit-distance constraints as follows.

Definition 1 (Approximate Entity Extraction).
Given a dictionary of entities E = {e1, e2, . . . , en}, text S,
and an edit-distance threshold τ , approximate entity extrac-
tion finds all pairs 〈s, ei〉 such that ed(s, ei) ≤ τ , where s is
a substring of S and ei ∈ E.

For instance, consider text S and dictionary E in Table 1.
Suppose the edit-distance threshold τ = 2. 〈“maros hadji”,
“marios hadji”〉, and 〈“nic kouds”,“nick koudas”〉, 〈“dievesh
criva”, “divesh sriva”〉 are three example results. Es-
pecially, although the substring of the text “sigmodmaros
hadji”misses a space between“sigmod”and“maros”(a typo-
graphical error), our method still can extract“maros hadji”.

Table 1: A dictionary of entities and text.
(a) Dictionary E (b) Text S

ID Entities Length
1 nick koudas 11
2 marios hadji 12
3 divesh sriva 12
4 dievemaros 10
5 rivakoudieva 12

Text
sigmodmaros hadjileftheriou,
nic kouds, dievesh crivastava:
incremental maintenance of
length normalized indexes for
approximate string matching

2.2 Two Existing Methods
q-gram: A q-gram of a string s is a substring of s with
length q. The q-gram set of s, denoted as G(s), is the
set of all of s’s q-grams. For example, the 3-gram set of
“nick_koudas” is {nic, ick, ck_, k_k, _ko, kou, oud, uda,
das}. Two strings r and s are similar only if they share
enough common q-grams [3]. Formally if ed(r, s) ≤ τ , then

|G(r) ∩G(s)| ≥ max(|r|, |s|)− q + 1− τ ∗ q
must hold, where |G(r)∩G(s)| is the size of G(r)∩G(s) and
|r| is the length of string r. This is called count filtering [3].
Based on this concept, we discuss two existing methods.

Approximate String Search based Method: Based on
count filtering, q-gram-based methods [4] are proposed to
address the approximate string search problem, which, given
a set of strings, a query string, and an edit-distance thresh-
old, finds all similar strings of the query string from the set.
Existing methods usually employ a filter-and-refine frame-
work and we also use this framework to address our problem.
Firstly we construct q-gram-based index structures for all
entities. For each q-gram, we use an inverted list to main-
tain those entities that contain the q-gram. For example,
consider the entities in Table 1(a), we can build its q-gram
index structures as shown in Table 2. For instance, the in-
verted list of gram “kou” is {1,5}. This denotes that entity
1 and entity 5 contain the gram. Secondly, given text S, we
extract all of its substrings from S. For each substring s, we

Table 2: q-gram indexes of entities in Table 1.
q-grams Inverted Lists

nic 1
ick 1
ck 1
k k 1
ko 1

kou 1,5
oud 1,5
uda 1
das 1
mar 2,4
ari 2
rio 2
ios 2
os 2
s h 2
ha 2

had 2
adj 2
dji 2
div 3

q-grams Inverted Lists
ive 3
ves 3
esh 3
sh 3
h s 3
sr 3
sri 3
riv 3,5
iva 3,5
die 4,5
iev 4,5
eve 4
vem 4
ema 4
aro 4
ros 4
vak 5
ako 5
udi 5
eva 5

generate s’s q-grams, and then find the entities that contain
at least δ q-grams in G(s) using the q-gram indexes, where
δ = |s| − q + 1 − τ ∗ q. That is we find the entities that
have at least δ occurrences in the inverted lists of q-grams of
s, and all such entities are taken as candidates. Finally we
verify the candidates and get the final results. For instance,
consider a substring s = “dievesh”, the inverted lists of its
q-grams is {4, 5}, {4, 5}, {4}, {3}, {3}. If τ = 1 and q = 3,
δ = |s| − 3 + 1 − 1 ∗ 3 = 2. As entities 3, 4, 5 have at leat
two occurrences, they are candidates.

Similarity Join based Method: We can also model the
substrings of the text as a set, and then we can join the set of
entities and the set of substrings to generate the similar pairs
using existing similarity-join based methods. Traditional
methods [6] usually employ a prefix-filter-based framework
and we can also use this framework to address our problem.
We first sort the q-grams of each entity and each substring,
for example based on IDF or in dictionary order. Then we
keep τ ∗q+1 q-grams for each string and each entity (Xiao et
al. proposed to reduce the prefix length in [6]). Consider a
string s, let Gp(s) denote the set of s’s first τ ∗q+1 q-grams.
Given an entity e and a substring s, they are similar only if
Gp(e) ∩ Gp(s) 	= φ. Based on this feature, we can use the
prefix set to find similar pairs.

Obviously many substrings share common q-grams, and
the two methods cannot utilize the shared computation across
the common grams. To address this problem, we propose ef-
ficient algorithms to improve performance.

3. A HEAP-BASED FRAMEWORK
In this section, we propose a heap-based framework to

address the problem of approximate entity extraction.

3.1 A Filter-and-Refine Framework
We have an observation that some substrings of S will not

produce any results, and we define valid substrings that are
potentially similar to some entities.

Valid Substring: Let Lmin and Lmax respectively denote
the minimal entity length and the maximal entity length in
the dictionary. Obviously all the substrings of text S with
length smaller than Lmin − τ or larger than Lmax + τ can
be pruned based on length filtering. We call the substrings
of text S with length between Lmin − τ and Lmin + τ valid
substrings, which may have similar entities in the dictionary.
For instance, consider the dictionary and text in Table 2.
Lmin = 10 and Lmax = 12. Suppose τ = 1. The substrings
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of the text with length between Lmin = 10− 1 and Lmax =
12 + 1 could have similar entities in the dictionary, and all
other substrings will not produce any results. For instance,
the substring “maros hadjileftheriou” cannot be similar
to any entity, and we can prune it.
A Filter-and-Refine Framework: We employ a filter-
and-refine framework to check whether each valid substring
has similar entities in the dictionary. In the filter step, we
generate the candidate pairs; and in the refine step, we ver-
ify the candidates to get the final results, by computing their
real edit distance using dynamic programming. In this pa-
per, we focus on the filter step. We employ the gram-based
method to address this problem. Given a valid substring s
and an entity ei, if ei’s occurrence number in the inverted
lists of q-grams inG(s) is no smaller than δ = |s|−q+1−τ∗q,
〈s, ei〉 is a candidate as discussed in Section 2.

3.2 Multi-Heap based Method
In this section, we propose a multi-heap based method.

Firstly, we construct q-gram-based index structures for all
entities. Secondly for each substring of the text, we generate
its q-grams, construct a heap on top of the inverted lists of
its q-grams, and adjust the heap to find similar entities for
the substring. Formally, let S[i, l] denote a substring of S
with length l, starting with the i-th character (including
the i-th character). Obviously S[i, l] is a valid substring if
Lmin − τ ≤ l ≤ Lmax + τ . For each valid substring S[i, l],
we first generate its q-gram set G(S[i, l]) and get inverted
lists of every gram in G(S[i, l]). Then we construct a min-
heap H(S[i, l]) using the first element of each inverted list.
Obviously the top element on the heap is the minimal entity
among all entities in the inverted lists. Next, we adjust the
heap, get the next top element, and count the occurrence
numbers of each entity. Finally, we output the entities that
have at least δ = max(Lmin−τ, l)−q+1−τ ∗q occurrences.
For example, consider a valid substring “dievesh criva”.

Suppose τ = 2. We have δ = max(10−2, 13)−3+1−2∗3 = 5.
We first generate its gram set {die, iev, eve, ves, esh, sh_,
h_c, _cr, cri, riv, iva} and get the inverted lists of the
q-grams as shown in Figure 1. Then, we construct a heap
on top of the first elements of each inverted list. Next, we
adjust the heap and get the entities {3, 3, 3, 3, 3, 4, 4, 4,
5, 5, 5, 5}, in ascending order. We count the occurrence
numbers of each entry and report the entities that have at
least δ = 5 occurrences. Here we get a candidate (entity 3).
Finally, we verify the candidates and get the final result.

Figure 1: A heap structure for the valid substring
“dievesh criva”.

3.3 Single-Heap based Method
In this section, we propose a new heap based method,

which only needs to construct a single heap on top of in-

verted lists of q-grams in G(S), denoted as H(S). For each
valid substring, we use a occurrence pair 〈ev, ov〉 to main-
tain the entity (ev) and its occurrence numbers in the sub-
string (ov, initialized as 0). We use the heap H(S) to count
the occurrence numbers of each entity in each valid sub-
string. Firstly consider the top element 〈eh, gi〉 on heap
H(S), where eh is an entity from the inverted list of gram gi.
Next we discuss how to find valid substrings that contain the
gram and then increase the occurrence number of eh in these
valid substrings. Without loss of generality, we first consider
the valid substrings with length l. Obviously the valid sub-
string S[i, l] contains the gram, and all the valid substrings
S[j > i, l] cannot contain gram gi. In addition, note that
the number of q-grams of a valid substring with length l is
l− q+1, thus the valid substring taking gi as the last gram
is S[i− (l− q+1)+ 1, l] as shown in Figure 2. Accordingly,
the valid substrings with length l that contain gram gi are
S[i− (l − q + 1) + 1, l], S[i− (l − q + 1) + 2, l], . . . , S[i, l].

Figure 2: Valid substrings with length l that contain
gram gi.

For any length l(Lmin − τ ≤ l ≤ Lmax + τ), we update
the occurrence numbers of eh in the corresponding valid
substrings as follows. For each valid substring s that con-
tains gram gi, if its kept entity ev is the same as eh, we
increase its occurrence number ov by one, and if the occur-
rence number (ov) is larger than or equal to the threshold
max(|s|, Lmin − τ) − q + 1 − τ ∗ q, we return it as a candi-
date; otherwise, we set the current entity ev = eh and set its
occurrence number ov = 1. Note that we only need to use a
tuple for each valid substring to maintain the information.

Next, we delete the top element 〈eh, gi〉 from heap H(S),
adjust the heap to get the next top element 〈e′h, g′i〉, and
update the occurrence numbers of e′h in the corresponding
valid substrings as discussed above. Interactively, we can
get all the similar substrings. We give a running example to
walk through the single-heap-based method.

For example, in our running example, consider text “nic
kouds dievesh criva”, we construct a single heap on top
of the text as shown in Figure 3. We have Lmin = 10 and
Lmax = 12. Suppose τ = 2. For the first entity 1 selected
from g0, we only need to increase its occurrence number in
valid substrings S[0, l] for Lmin − τ ≤ l ≤ Lmax + τ , i.e.,
S[0, 8], S[0, 9], . . . , S[0, 14]. For the next entity 1 selected
from g3, we need to increase its occurrence number in valid
substrings S[0, l], S[1, l], S[2, l], S[3, l] for Lmin − τ ≤ l ≤
Lmax + τ . Similarly, we can count the occurrence numbers
of each entity in every valid substring. For instance, the
occurrence number of entity 1 (“nick koudas”) in S[0, 8] is 4.
As the occurrence number of entity 1 is larger than δ =
11 + 1 − q − τ ∗ q = 3, the valid substring S[0, 8] (“nic
kouds”) is a candidate for entity 1 (“nick koudas”).

4. EXPERIMENTS
We compared our algorithms with state-of-the-art meth-

ods, approximate-string-based methods (AppSearch) [4], similarity-
join-based methods (ED-Join) [6], and NGPP [5]. For AppSearch,
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(a) A heap structure

〈 entity, gi 〉 〈 valid substrings, occurrence number 〉
〈1, 0〉 〈S[0, 8], 1〉; 〈S[0, 9], 1〉; 〈S[0, 10], 1〉; 〈S[0, 11], 1〉;

〈S[0, 12], 1〉; 〈S[0, 13], 1〉; 〈S[0, 14], 1〉
〈1, 3〉 〈S[0, 8], 2〉; 〈S[0, 9], 2〉; 〈S[0, 10], 2〉; 〈S[0, 11], 2〉;

〈S[0, 12], 2〉; 〈S[0, 13], 2〉; 〈S[0, 14], 2〉; 〈S[1, 8], 1〉;
〈S[1, 9], 1〉; 〈S[1, 10], 1〉; 〈S[1, 11], 1〉; 〈S[1, 12], 1〉;
〈S[1, 13], 1〉; 〈S[1, 14], 1〉; 〈S[2, 8], 1〉; 〈S[2, 9], 1〉;
〈S[2, 10], 1〉; 〈S[2, 11], 1〉; 〈S[2, 12], 1〉; 〈S[2, 13], 1〉;
〈S[2, 14], 1〉; 〈S[3, 8], 1〉; 〈S[3, 9], 1〉; 〈S[3, 10], 1〉;
〈S[3, 11], 1〉; 〈S[3, 12], 1〉; 〈S[3, 13], 1〉; 〈S[3, 14], 1〉

. . . . . .

(b) Occurrence tuples of valid substrings
Figure 3: A single-heap-based method for text “nic
kouds dievesh criva”.
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Figure 4: Performance comparison of multi-heap-
based methods and single-heap-based methods.

we modified the implementation of q-gram-based listmerger
algorithms in Flamingo Project1 to support approximate en-
tity extraction. We also extended state-of-the-art similarity-
join algorithm ED-Join to support approximate entity ex-
traction. We downloaded the binary codes of ED-Join [6]
and NGPP [5] from “Similarity Joins” project website2. We
varied the gram length q and reported the best performance
of each method. All the algorithms were implemented in
C++ and compiled using GCC 4.2.3 with -O3 flag. All the
experiments were run on a Ubuntu machine with an Intel
Core 2 Quad X5450 3.00GHz processor and 4 GB memory.
We used two real datasets, DBLP 3 and PubMed 4. DBLP is
a computer-science publication dataset. We selected 95,293
author names as entities and 10,000 papers with author and
title as text. PubMed is a medical publication dataset. We
selected 152,096 commonly used medical terms as entities
and 10,000 publications with title and author names as text.

We first compared the multi-heap-based method and the
single-heap-based method by varying edit-distance thresh-
olds. Figure 4 shows the experimental results. We see that
the single-heap-based method outperforms the multi-heap-
based method by an order of magnitude, and even two or-
ders of magnitude in some cases. There are two reasons that

1http://flamingo.ics.uci.edu/
2http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html
3http://www.informatik.uni-trier.de/∼ley/db
4http://www.ncbi.nlm.nih.gov/pubmed/

the single-heap-based method is better than the multi-heap-
based method. Firstly, the multi-heap-based method needs
to scan each gram inverted list of the text many times and
the single-heap-based method only needs to scan them once.
Secondly the multi-heap-based method needs to construct
and adjust larger numbers of heaps, and the single-heap-
based method only adjusts a single heap.

Then we compared our best method AERHeap (using length
pruning techniques) with existing methods, AppSearch, ED-
Join, and NGPP. Figure 5 shows the results. We see that our
method AERHeap achieved the highest performance. This is
because our method can use the shared computation across
overlapped grams, but the existing methods cannot.
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Figure 5: Comparison with existing methods.

5. CONCLUSION
In this paper, we have studied the problem of approxi-

mate entity extraction with edit-distance thresholds. We
proposed a heap-based framework to address this problem.
The single-heap-based method only needs to construct a sin-
gle heap and can extract all entities by scanning each gram
inverted list of text only once. We have implemented our al-
gorithms, and tested our method on three real datasets. The
experimental results show that our method achieves high
performance and outperforms state-of-the-art studies.
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