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ABSTRACT

The quantity of data in real-world applications is grow-
ing significantly while the data quality is still a big prob-
lem. Similarity search and similarity join are two impor-
tant operations to address the poor data quality problem.
Although many similarity search and join algorithms have
been proposed, they did not utilize the abilities of modern
hardware with multi-core processors. It calls for new par-
allel algorithms to enable multi-core processors to meet the
high performance requirement of similarity search and join
on big data. To this end, in this paper we propose paral-
lel algorithms to support efficient similarity search and join
with edit-distance constraints. We adopt the partition-based
framework and extend it to support parallel similarity search
and join on multi-core processors. We also develop two novel
pruning techniques. We have implemented our algorithms
and the experimental results on two real datasets show that
our parallel algorithms achieve high performance and obtain
good speedup.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems-Textual Databases;
H.3.3 [[Information Storage and Retrieval]: Informa-
tion Search and Retrieval-Search Process

General Terms

Algorithms, Experimentation, Performance

Keywords

Similarity Search, Similarity Join, Parallel Algorithms, Con-
tent Filter

1. INTRODUCTION
String similarity search and join are two essential oper-

ations in data cleaning and integration. Informally, given
a collection of strings and a query string, string similarity
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search is to find all similar strings to the given query string;
given two collections of strings, string similarity join is to
find all pairs of similar strings from the two collections. Ef-
ficient approaches for similarity search and join are highly
required by a variety of applications, such as data integra-
tion and document clustering.

Typically, a similarity function and a threshold are spec-
ified to determine whether two strings are similar or not.
If the similarity of two strings computed by the similarity
function is no smaller than the threshold, the two strings
are taken as a similar string pair. There are many similar-
ity functions, such as Jaccard, Cosine, and Edit Distance.
In this paper we focus on using edit distance to quantify
string similarity. The edit distance between two strings is
defined as the minimum number of operations (deletion, in-
sertion, replacement) to transform one string to the other.
For example, consider two strings “edby” and ”edbt”. Their
edit distance is ed(“edby”, “edbt”) = 1 as we can trans-
form “edby” to “edbt” by one replacement operation (i.e.
replace “y” with “t”), and this is the minimum number of
required operations. We say two strings are similar if their
edit distance is no larger than the user specified edit-distance
threshold. For this example, if the specified threshold is 1,
then (“edby”, ”edbt”) is returned as a similar string pair.

There are many studies on string similarity search and
join. We can broadly classify them into three categories.
(1) Gram-based method [14, 33, 31, 29]. They transform
strings into grams and develop a filtering condition: if two
strings are similar then they must share a certain number
of common grams. To enhance the performance, they also
proposed prefix-filtering based technique: they generated
a prefix for each string by selecting some of its represen-
tative grams and deduced that if two strings are similar,
their prefixes must share a common gram. They devel-
oped effective pruning techniques to generate high-quality
prefixes. (2) Trie-based method [13, 18, 19, 27, 9]. They
build a trie structure on top of strings and utilized the trie
structure to do effective pruning: if two strings are similar,
their prefixes must be similar enough[27]. Different from
gram-based method, these methods can directly find all an-
swers and do not employ a filter-and-verification framework.
(3) Partition-based method [30, 28, 16]. They partitioned
strings into segments and proved that if two strings are sim-
ilar then they must share some common segments. They
utilized this property to support similarity join and search.

In order to obtain a clear picture of the performance of
state-of-the-art approaches, we extensively compare these
methods on different datasets and make the following ob-



servations. The trie-based method got high performance on
the datasets with short strings and the gram-based method
obtained high performance on the datasets with long strings.
The partition-base method always achieved high performance
for both short strings and long strings. Thus, in this paper,
we adopt the partition-based method as our framework. We
enable it to support parallel similarity search and join on
multi-core processors. To further enhance the performance,
we propose two pruning techniques, content filter and effec-
tive indexing strategy.

The rest of this paper is organized as follows. Section 2
formulates string similarity join and search problems. Sec-
tion 3 introduces our framework. We propose two novel
pruning techniques in Section 4, and a parallel algorithm in
Section 5. Section 6 extends our join algorithm to support
similarity search. We report experimental results in Sec-
tion 7. Section 8 reviews related works and we conclude the
paper in Section 9.

2. PROBLEM DEFINITION
In this section, we formally define string similarity join

and search problems with edit-distance constraints.

Definition 1 (String Similarity Joins). Given two
collections of strings R and S, and an edit-distance threshold
τ , a similarity join finds all string pairs 〈r, s〉 ∈ R×S such
that ed(r, s) ≤ τ .

Table 1: A collection of strings

(a) Strings (b) Sorted strings
Strings
avataresha
caushik chakrabar
kaushic chaduri
kaushik chakrab
kaushuk chadhui
vankatesh

ID Strings Length
s1 vankatesh 9
s2 avataresha 10
s3 kaushic chaduri 15
s4 kaushik chakrab 15
s5 kaushuk chadhui 15
s6 caushik chakrabar 17

Without loss of generality, we focus on the self-join prob-
lem (i.e. R = S) in this paper. Note that our method
can be easily extended to support similarity joins on two
different collections. For example, consider the strings in
Table 1(a). If the specified edit-distance threshold is τ = 3,
then 〈“kaushik chakrab”, “caushik chakrabar”〉 will be re-
turned as a similar pair since their edit distance is no larger
than τ .

Definition 2 (String Similarity Search). Given a
collection of strings S, a query string q and an edit-distance
threshold τ , a similarity search finds all strings s ∈ S such
that ed(s, q) ≤ τ .

For example, consider the strings in Table 1(a). Given the
query string“avatars”and threshold τ = 3,“avataresha”will
be returned as its edit distance to the query is ed(“avatars”,
“avataresha”) ≤ 3.

In the following sections, we mainly focus on how to devise
efficient parallel algorithms to support similarity join and
search based on our partition-based framework [16].

Algorithm 1: SimilarityJoin(S , τ )

Input: S : A collection of strings
τ : A given edit-distance threshold

Output: A = {(s ∈ S , r ∈ S) | ed (s, r) ≤ τ}
1 begin
2 Sort S by string length in ascending order ;
3 Partition each s ∈ S and add its segments into

Li

|s|(1 ≤ i ≤ τ + 1);

4 foreach s ∈ S do
5 foreach Li

l (|s| − τ ≤ l ≤ |s|, 1 ≤ i ≤ τ + 1) do
6 foreach w ∈SubstringSelection(s, Li

l) do
7 foreach r ∈ Li

l[w] & |r| ≤ |s| do
8 d = Verification(s, r, τ );
9 if d ≤ τ then A ← 〈r, s〉;

Figure 1: Partion-based Algorithm

3. PARTITION-BASED FRAMEWORK FOR

SIMILARITY JOINS
This section provides some background knowledge about

our partition-based framework [16]. We first illustrate the
basic idea. Consider two strings r and s, and a given edit-
distance threshold τ . We partition r into τ + 1 disjoint
segments. If s has no substring that matches a segment of
r, s cannot be similar to r [16], thus we can prune the pair
〈r, s〉 without computing their real edit distance. If s has a
substring that matches a segment of r, we verity the pair
〈r, s〉. Notice that we do not use the dynamic programming
algorithm to compute their edit distance [16]. Instead, we
utilize the matching part to verify the pair.

For example, consider the strings in Table 1. Suppose
τ = 3. We partition s1 = “vankatesh” into four segments
{“va”, “nk”, “at”, “esh”}. As strings s3, s4, s5, s6 have no
substring which matches segments of s1, they are not sim-
ilar to s1. Consider an another example. Consider s5 =
“kausic_chakduri”with four segments {“kau”,“sic_”,“chak”,
“duri”} and s6 = “caushik_chakrabar”. s6 has a substring
that matches the third segment“chak”of s5. Then we utilize
the matching part “chak” to verify the pair.

Based on this idea, we introduce the partition-based al-
gorithm. The pseudo-code is shown in Figure 1. It first
sorts strings by length in ascending order (line 2). Then,
it generates segments for each string and builds an inverted
index for each segment (line 3). Next it visits each string in
sorted order (line 4). For each inverted index Li

l(|s| − τ ≤
l ≤ |s|, 1 ≤ i ≤ τ + 1), it selects the substrings of s (line 5
to line 6). For any string r with length no larger than |s| in
inverted list Li

l [w], the string pair 〈r, s〉 is a candidate pair
and it verifies the pair (line 7 to line 8). If the pair pass the
verification, it adds the pair into the result set (line 9).

In the algorithm, there are three challenges. The first one
is how to partition the strings. The second one is how to
select substrings (i.e., function SubstringSelection). The
third challenge is how to verity the pair based on the match-
ing part (i.e., function Verification). We will discuss the
details in Sections 3.1, 3.2, and 3.3 respectively.

3.1 Partition Scheme
Given a string, there could be many strategies to partition



the string into τ+1 segments. In the paper we use the even-
partition scheme as an example [16]. Consider a string s

with length |s|. In even partition scheme, each segment has

a length of ⌊ |s|
τ+1
⌋ or ⌈ |s|

τ+1
⌉. Let k = |s| − ⌊ |s|

τ+1
⌋ ∗ (τ + 1).

In even partition, the last k segments have length ⌈ |s|
τ+1
⌉,

and the first τ +1−k ones have length ⌊ |s|
τ+1
⌋. For example,

consider s1=“vankatesh”and τ = 3. Then length of s1 (|s1|)
is 9. k = 1. s1 has four segments {“va”,“nk”,“at”, “esh”}.

3.2 Substring Selection
After partitioning a string into segments, we need to select

substrings from another string and check if there is any se-
lected substring matches any of the segments. Intuitively, we
can select all the substrings. However this method is rather
expensive. To address this issue, we have proposed several
effective substring selection strategies and proved that the
multi-match-aware substring selection method selected the
minimum number of substrings in [16] . In the paper we use
the multi-match-aware substring selection method.
Multi-match-aware Substring Selection. Given two
strings r and s. Suppose we partition r into τ +1 segments.
For each segment of r, e.g., the i-th segment, we select some
substrings of s and check whether they match the i-the seg-
ment of r. Suppose the start position of the i-th segment of
r is pi. The multi-match-aware substring selection method
only selects substrings with start position in [⊥i,⊤i] = [pi−
(i−1), pi+(i−1)]∩ [pi+△− (τ+1− i), pi+△+(τ +1− i)]
where △ is the length difference of the two strings.

For example, consider string r = “vankatesh” with four
segments, {va, nk, at, esh}. Consider string s=“avataresha”.
For the first segment, we have ⊥i = 1 − 0 = 1 and ⊤i =
1 + 0 = 1. We select “av” for the first segment. For the sec-
ond segment, we have⊥i = 3−1 = 2 and ⊤i = 3+1 = 4. We
select substrings“va”, “at”, and“ta” for the second segment.
For the third segment, we have⊥i = 5+1−(3+1−3) = 5 and
⊤i = 5+1+(3+1−3) = 7. We select substrings “ar”, “re”,
and “es” for the third segment. For the fourth segment, we
have⊥i = 7+1−(3+1−4) = 8 and⊤i = 7+1+(3+1−4) = 8.
Thus we select the substring “sha” for the fourth segment.

3.3 Verification
If string s has a substring that matches a segment of

r, we need to verify this string pair. We have proposed
two verification methods, length-aware verification method
and extension-based verification method, in [16]. In the dy-
namic programming algorithm to compute edit distance, the
length-aware verification method utilizes the length differ-
ence to estimate the minimum number of edit operations
which can reduce the time cost. The extension-based verifi-
cation method partitions r and s into three parts, the match-
ing parts (rm = sm), the left parts rl, sl (on the left side
of the matching part), and the right parts rr, sr. If the left
parts or the right parts are dissimilar within deduced thresh-
old, it can prune the pair. Formally, if r and s are similar,
then ed(rl, sl) ≤ i − 1 and ed(rr, sr) ≤ τ + 1 − i. If any
condition is not true, we can prune the pair.

For example, suppose τ = 3 and we want to verify s5
= “kausic chakduri” and s6 = “caushik chakrabar”. s5
and s6 share a segment “chak”. We have the left parts s5l
= “kausic_” and s6l = “caushik_”, and the right parts s5r
= “duri” and s6r = “rabar”. As ed(s5r , s6r ) = 3 we can
eliminate the pair of matching substring and segment as r

and s cannot be similar by aligning the third segment of r
to the substring of s [16].

4. PRUNING TECHNIQUES
In this section, we propose two new pruning techniques,

content filter and effective indexing strategy, to further en-
hance our partition-based framework.

4.1 Content Filter
After we obtain a set of string pairs that share common

segments, we aim to verify each string pair efficiently in
order to avoid expensive edit-distance computation. Hence,
we propose content filter to achieve this goal. The idea is
a little similar to content-based mismatch filtering [31] but
with several major improvements: 1) we derive a stronger
filter condition by considering string length difference; (2) we
group symbols in order to improve the content-filter running
time; (3) we integrate content filter with our extension-based
verification method in order to enhance the content-filter
pruning power for large edit-distance thresholds.

Stronger Filter Condition

Let Σ be a set of distinct symbols in the collection of strings.
For each string s, let Hs denote its frequency histogram,
where Hs is a |Σ|-dimensional vector, and its i-th dimen-
sion Hs[i] represents the number of occurrences that the
symbol δi ∈ Σ appears in s. Given two strings r and s, the
L1 distance between their frequency histograms is defined
as SUM1≤i≤|Σ|

∣

∣Hr[i]−Hs[i]
∣

∣. If they are similar within edit
distance τ , since an edit distance at most changes the dis-
tance by two, the L1 distance of their frequency histograms
should be no larger than 2τ .

Our next goal is to derive a stronger filter condition. With-
out loss of generality, suppose |r| ≥ |s|, and let △ = |r| − |s|
denote the length difference between r and s. Consider the
edit operations that are used to transform r to s. As a dele-
tion or insertion operation changes the number of characters
in r by one while a substitution operation cannot change the
number of characters in r, the transformation with the mini-
mum number of edit operations from r to s contains at least
△ deletion operations and at most τ−△ substitution opera-
tions. In addition, a deletion or insertion operation changes
the L1 distance between the frequency histograms by one
and a substitution operation changes it by two. Thus, the
L1 distance between the frequency histograms of r and s is
at most 2(τ −△) +△ = 2τ −△.

We can further optimize the filter condition by taking into
account the frequency difference w.r.t each symbol. For the
string s, a deletion operation, an insertion operation, or a
substitution operation can at most change a symbol’s fre-
quency by one. Thus for each symbol, the frequency differ-
ence between r and s should be no larger than τ .

In summary, our new filter condition, namely content fil-
ter, can prune a string pair if the two strings have any symbol
with frequency difference larger than τ or the L1 distance of
their frequency histograms is larger than 2τ −△.

For example, consider two strings“abcdef”and“axxcdexf”,
and suppose the edit-distance threshold is τ = 2. We parti-
tion“abcdef”into three segments using even partition scheme
and get “ab”, “cd”, and “ef”. The multi-match-aware sub-
string selection method returns this pair of strings as a can-
didate pair since the selected substring“cd” from“axxcdexf”
matches the segment “cd” in “abcdef”. Using the content



filter, we can prune this pair of strings since either the fre-
quency difference of symbol “x” is 3 which is more than
τ = 2, or the L1 distance between the two strings is 4 which
is larger than 2τ − |△| = 2. Note that the content-based
mismatch filtering [31] cannot filter this pair of strings.

Grouping Symbols

Sometimes the symbol size |Σ| is relatively large compared
to string lengths. For example, the city name dataset used
in our experiment has a table with about 200 symbols while
the average string length is no more than 12. Thus the cost
to scan the entire symbol table might be very high.

To solve this problem, we divide the symbols in Σ into
k(< |Σ|) disjoint symbol groups, and set the group frequency
of a symbol group as the sum of frequencies of all the symbols
in this group. It is easy to prove that the above content-filter
condition still holds after grouping the symbols. That is, if
two strings are similar within edit-distance threshold τ , for
any symbol group, its group frequency difference between
the two strings should be no more than τ , and the L1 dis-
tance between the group frequency histograms of the two
strings should be no more than 2τ −△. By grouping sym-
bols, we can significantly reduce the scan cost to the number
of symbol groups (i.e., k), thus improve the content-filter
running time.

For example, consider the two strings“abcdef”and“axxcdexf”
and suppose the edit distance threshold τ = 2. If “a”, “b”,
“c” and “d” belong to the same group, and “e”, “f” and “x”
belong to another group of symbols, we can prune the pair of
strings since the L1 distance between their group frequency
histograms is 1 + 3 = 4 which is larger than 2τ − |△| = 2.

Integrating the two techniques with our extension-based
verification method

In order to enhance the content-filter pruning power for large
thresholds, we integrate content filter with our extension-
based verification method. Given two strings r and s, if
the multi-match-aware substring selection method finds a
substring sm of s matching the i-th segment rm of r, the
extension-based verification method needs to verify whether
ed(rl, sl) ≤ i−1 and ed(rr, sr) ≤ τ+1−i using length-aware
verification method. By applying content filter to left strings
and right strings respectively, we need to (1) check the left
strings whether their L1 distance is within 2(i−1)−

∣

∣|rl|−|sl|
∣

∣

and the group frequency differences of each symbol group are
all within i− 1; (2) check the right strings whether their L1

distance is within 2(τ + 1 − i) −
∣

∣|rr| − |sr|
∣

∣ and the group
frequency differences of each symbol group are all within
τ +1− i. Note that the thresholds that we need to check are
much smaller than the original threshold, thus potentially
leading to better pruning power.

For example, suppose |r| = |s| = 102, edit-distance thresh-
old τ = 16 and a substring of s with start position 39
matches the 8-th segment of r with start position 43. In-
stead of checking whether the L1 distance is larger than 32
we only need to check wether the L1 distance of rl and sl is
within 2(i−1)−

∣

∣|rl|−|sl|
∣

∣ = 2∗(8−1)−|43−39| = 10 and the

L1 distance of rr and sr is within 2(τ+1− i)−
∣

∣|rr|− |sr|
∣

∣ =
2 ∗ (16 + 1− 8)− 4 = 14.

4.2 Effective Indexing Strategy
Consider two strings “abcdef” and “adcxxef” and suppose

edit-distance threshold is τ = 2. If we partition “abcdef”

Algorithm 2: ParallelSimilarityJoin(S , τ )

Input: S : A collection of strings
τ : A given edit-distance threshold

Output: A = {(s ∈ S , r ∈ S) | ed (s, r) ≤ τ}
1 begin

// parallel sorting

2 Paralleled sort S by string length in descending
order ;
// parallel indexing longer strings

3 Paralleled build inverted indexes

Li

l (lmin ≤ l ≤ lmax, 1 ≤ i ≤ τ + 1) ;
// spliting datasets

4 Split S into several small datasets S ′ and each
thread processes one dataset S ′ ;
// signle thread algorithm

5 foreach s ∈ S ′ do
6 foreach Li

l (|s| ≤ l ≤ |s|+ τ, 1 ≤ i ≤ τ + 1) do
7 foreach w ∈SubstringSelection(s, Li

l) do
8 foreach r ∈ Li

l[w] & |r| ≥ |s| do
// content filters

9 ContentFilter(sl, rl, i) ;
10 ContentFilter(sr, rr, τ + 1− i) ;
11 d = Verification(s, r, τ );
12 if d ≤ τ then A ← 〈r, s〉;

Figure 2: Parallel Similaity Join

into three segments using even partition scheme, “ab”, “cd”
and “ef”, our multi-match-aware substring selection method
considers this pair as a candidate pair as they share a com-
mon substring/segment “ef” and content filter cannot prune
it either as their L1 distance is 3 which is within 2τ −△ and
the frequency differences of all symbols are also within τ = 2.
But if we partition “adcxxef” into three segments using even
partition scheme, ‘ad”, ‘cx” and ‘xef”, multi-match-aware
substring selection method cannot select a substring from
“abcdef” which matches with any of the three segments,
thus this pair can be pruned.

Intuitively, the longer the length of a segment, the lower
the possibility it matches a substring selected by the multi-
match-aware substring selection method. Thus we sort the
given collection of strings in the decreasing order of string
length, and index the longer strings which have a longer
average length of segments. Then we select substrings from
shorter strings and use them to find candidate pairs based
on the indexes of longer strings.

5. PARALLEL SIMILARITY JOIN
In this section, we extend our algorithm and devise a par-

allel algorithm. The algorithm includes three main compo-
nents, the sort phrase, the indexing phrase and the similarity
joining phrase. The pesudo-code is illustrated in Figure 2.

Parallel Sorting: We first sort the dataset by string length
in descending order to index the longer strings. We use
existing parallel sorting algorithm (line 2) to sort the strings.
The experiment results show the speedup can reach up to
6x with 8 threads.

Parallel Indexing: In the partition-based framework we



need to build inverted indexes Li

l for each lmax ≤ l ≤ lmin

and 1 ≤ i ≤ τ+1. As all inverted indexes are disjoint to each
other, we can easily build the indexes in parallel (line 3). The
experiment results show the speedup of the indexing phrase
is about 3x with 8 threads. This step has poor parallelism.
The main reason may be from the cache architecture. The
(L1/L2) cache can be well-utilized in a single thread and our
parallel algorithm may involve more cache miss.

Parallel Join: To execute the similarity join operation
in parallel, we first split the dataset S into several small
datasets S ′ and use each thread to process a small dataset
(line 4). Note that, before utilizing the extension-based ver-
ification method to verify two strings r and s, we apply the
content filter on the left side an right side of r and s (line 9
to line 10). The experiment results show the speedup can
reach 6x with 8 threads.

6. PARALLEL SIMILARITY SEARCH
The similarity search problem is similar to the similar-

ity join problem except that the edit distance threshold is
not given in advance. To solve this problem, we first build
inverted indexes for each possible edit-distance thresholds.
Notice that we can only build index for some thresholds.
Then for each query string, we utilize the corresponding in-
dexes to find its similar strings. The pseudo-code is shown
in Figure 3.

Notice that we build inverted indexes in a pre-processing
step (line 2). For each query with edit-distance threshold
τ , we select inverted indexes Li

l(τ
′) with the smallest edit-

distance threshold τ ′ such that τ ′ ≥ τ (line 3). Then, we se-
lect substrings for this query string using multi-match-aware
substring selection method and verify all candidate pairs us-
ing extension-based algorithm with edit distance τ ′(line 4 to
line 9). The extension-based algorithm returns a value ed. If
ed ≤ τ we add this pair into result set as we can find a trans-
formation from r to q with the number of edit operations not
larger than τ . If ed > τ ′ we drop this pair. Otherwise, we
need to call the length-aware verification method to compute
their real edit distance(line 9 to line 12).

To parallel the similarity search algorithm, we only need
to split all the query strings into several parts and use each
thread to process one part of the query set. Thus our algo-
rithm can achieve good speedup.

7. EXPERIMENT
In this section we evaluate the parallel similarity search

and join algorithms. Our goal is to evaluate (1) the effec-
tiveness of new pruning techniques, (2) the parallelism of
our algorithms, (3) the scalability of our algorithms.

Setup: All the algorithms were implemented in C++. The
programs were complied by GCC 4.7.2 with -O3 and -pthread
flags. We ran our programs on a Fedora machine with 16
Intel Xeon E5-2650 2GHz processors and 64GB memory.

Dataset: We used the two real datasets Reads and GeoN-

ames provided by the organizer of the workshop for string
similarity search/join competition∗. Reads was a human
genome read dataset which consisted of 750,000 reads from
different human genomes. Its symbol size was 5. GeoN-

ames consisted of 400,000 city names from all over the world
∗http://www2.informatik.hu-berlin.de/∼wandelt/
searchjoincompetition2013/

Algorithm 3: SimilaritySearch(S , q, τ )

Input: S : A collection of strings
q: query string; τ : query edit distance

threshold;
Output: A = {s ∈ S | ed (s, q) ≤ τ}

1 begin
// build inverted indexes off-line

2 Paralleled build all the inverted indexes Li

l(t) for
each 0 ≤ t ≤ τm(lmin ≤ l ≤ lmax, 1 ≤ i ≤ t+ 1) ;
// online processing queries

3 Select inverted indexes Li

l(τ
′) with smallest edit

distance threshold τ ′ such that τ ′ ≥ τ ;

4 foreach Li

l(τ
′)(|q|−τ ′≤l≤|q|+τ ′, 1≤i≤τ ′+1) do

5 foreach w ∈SubstringSelection(q, Li

l(τ
′))

do
6 foreach r ∈ Li

l(τ
′)[w] do

// content filters

7 ContentFilter(ql, rl, i) ;
8 ContentFilter(qr, rr, τ

′ + 1− i) ;
9 ed =Verification(q, r, τ ′) ;

10 if ed ≤ τ then add r into A ;
11 else if ed > τ ′ then continue ;
12 else verify(q, r, τ ) ;

Figure 3: Parallel Similarity Search

and its symbol size was about 200. We also synthetically
generated two query datasets for similarity search and each
dataset consisted of 100,000 queries. In the following ex-
periments, we assigned the same edit-distance thresholds
for each of the queries. We give some statistic of the four
datasets in Table 2. The length distributions are shown in
Figure 4.

Table 2: Datasets
Datasets cardinality avg len min len max len

GeoNames 400,000 11.1 1 60

GeoName Query 100,000 10.7 2 43

Reads 750,000 101.4 86 106

Read Query 100,000 101.2 88 116
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Figure 4: Length distribution.

7.1 Evaluating Pruning Techniques
In this section we evaluate the effectiveness of our pruning

techniques for similarity search and join.

Similarity Join. We have implemented four methods based
on the two pruning techniques proposed in Section 4 for sim-



ilarity join. The Basic algorithm does not apply any prun-
ing techniques. The Content algorithm applies the content-
filter technique and indexes the shorter strings. The Longer
algorithm indexes the longer strings but does not use the
content-filter technique. The ParaJoin algorithm contains
the content-filter technique and indexes the longer strings.
We report the running time of each of the four methods on
Reads and GeoNames dataset as shown in Figure 5. We ob-
serve that the ParaJoin algorithm achieved the highest per-
formance and the Longer and Content algorithms outper-
formed the Basic algorithm. For example, on Reads dataset
with edit-distance threshold τ = 16, the elapsed time for
Basic algorithm was about 800 seconds while the ParaJoin
algorithm only used 200 seconds, leading to 3x faster. This
shows that our content filter technique and indexing longer
strings technique can improve the performance. Hereafter,
we only show the performance of the ParaJoin algorithm for
similarity join.
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Figure 5: Evaluating effectiveness of the pruning
techniques for similarity join(8 threads).

Similarity Search. Since similarity search indexes all the
strings, the index longer strings filter is not applicable in
this problem. Thus we only implemented two methods Ba-
sicSearch and ParaSearch for similarity search based on
whether using the content filter or not. The experimental re-
sults on two datasets are shown in Figure 6. We can see that
the ParaSearch method was better than the BasicSearch

method. For example, in Reads dataset, the ParaSearch al-
gorithm used 60 seconds while the BasicSearch algorithm
took 200 seconds. This also shows the effectiveness of the
content filter on similarity search and hereafter we only show
the performance of the ParaSearch algorithm for similarity
search.
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Figure 6: Evaluating effectiveness of the pruning
techniques for similarity search(8 threads).

7.2 Evaluating Parallelism
In this section, we evaluate the running time of our simi-

larity search and join algorithms by varying the number of
threads from 2 to 8. The experimental results are shown in
Figure 7 and Figure 8. We can see that the running time is

decreased with the increase of the number of threads used.
For example, the elapsed time of the similarity join algo-
rithm with edit-distance threshold τ = 16 on Reads dataset
was about 600 seconds when using 2 threads and the time
decreases to 200 seconds when using 8 threads. For the sim-
ilarity search algorithm on GeoNames dataset with τ = 4, the
elapsed time was 130 seconds when number of threads used
is 2 while the time was 40 seconds when using 8 threads.
The main reason is as follows. For similarity join, we can
parallel sorting, indexing and joining steps. Although the
indexing step cannot achieve high parallelism, it as domi-
nated by the joining step, thus the algorithm still achieved
high overall parallelism. For similarity search, we can use
different threads to answer different queries thus our algo-
rithm achieved high parallelism.
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Figure 7: Evaluating running time of similarity join
by varying number of threads.
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Figure 8: Evaluating running time of similarity
search by varying number of threads.

We also evaluated the speedups of our similarity search
and join algorithms as shown in Figure 9 and Figure 10.
The speedup is the ratio of time consuming of the parallel
program with that of the single thread program. Except
the speedup of our algorithms with different edit-distance
thresholds, we also illustrated the ideal speedup curve. We
can see that our algorithms have good speedups especially
when τ is large. For example, the 8-threads similarity join
algorithm have a speedup of 6 when τ = 4 on the GeoN-

ames dataset and the 8-threads similarity search algorithm
achieved a speedup of 7 when τ = 8 on the Reads dataset.
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Figure 9: Evaluating speedup of similarity join.
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Figure 10: Evaluating speedup of similarity search.

7.3 Evaluating Scalability
In this section we evaluated the scalability of our paral-

lel algorithms. Figure 11 and Figure 12 show the running
time of our algorithms on datasets with different sizes. We
increased the size of original datasets by following the same
rules of frequencies of symbols and distributions of string
lengths. We can see our algorithms achieved very good scal-
ability. For example, for the similarity search algorithm on
GeoNames dataset with edit distance threshold τ = 4, the
running time for dataset sizes of 0.25, 0.5, 0.75 and 1 mil-
lions are 8, 16, 25, and 34 seconds respectively.
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Figure 11: Evaluating the scalability of the similar-
ity join algorithm(8 threads).
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Figure 12: Evaluating the scalability of the similar-
ity search algorithm(8 threads).

8. RELATED WORKS
There are many related works on string similarity join [10,

24, 6, 1, 2, 25, 31, 32, 26, 27, 23, 16, 28, 22, 29] and string
similarity search [5, 15, 14, 11, 34, 12, 3, 35, 4, 17, 21, 20,
8].

String similarity join. Most existing works used signature-
based framework to solve string-similarity-join problem. They
first generated a set of signatures for each string and en-
sured that every similar string pair must share at least one
common signature, and then utilized some index structures

(e.g. inverted index) to filter string pairs whose signature
sets have no overlap, and finally only verified the remain-
ing string pairs by comparing their real edit distance. A
variety of signature schemes are proposed to achieve this
goal, such as q-gram [10], deletion-based neighborhood [25],
gram-chunk [23], and partition-based segments [16]. In ad-
dition to signature schemes, many works also try to opti-
mize the filtering step by reducing redundant signatures [6,
2, 31], or improve the verification performance by avoiding
expensive edit-distance computation [16]. Trie-Join is an-
other direction ?? which used trie structure to achieve high
performance. It can directly find similar pairs and avoid the
verification step.

String similarity search. Similarity-search approaches
will first build indexes for the string collection. Then, for a
given query string, they utilized the index to filter a large
number of dissimilar strings to the query string, and only
verified the survived strings to find similar strings to the
query string. In terms of indexing structures, most ap-
proaches [14, 11, 3, 12, 4] employed an inverted index for
storing mappings from signatures to strings in the data.
Another different approach adopted Bed-tree [35], which is a
B+-tree based index structure with the benefit of supporting
a diverse set of query types, such as top-k query and range
query. In terms of searching, various filtering algorithms
(e.g.,DivideSkip [14]) were proposed to efficiently find simi-
lar strings to the query string based on the constructed index
structure. Dong et al.[7] proposed progressive algorithms to
find top-k similar strings.

9. CONCLUSION
In this paper we study the problem of similarity search and

joins with edit distance constraints. We proposed efficient
parallel algorithms to accelerate similarity search and sim-
ilarity joins. We utilize the partition-based framework [16]
and integrate it with two novel pruning techniques. We dis-
cuss how to parallel the partition-based framework and how
to support similarity searches. Experiments show high effi-
ciency and good speedup of our algorithms.
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