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Abstract—String similarity join is an essential operation in
data integration. The era of big data calls for scalable algorithms
to support large-scale string similarity joins. In this paper,
we study scalable string similarity joins using MapReduce.
We propose a MapReduce-based framework, called MASSJOIN,
which supports both set-based similarity functions and character-
based similarity functions. We extend the existing partition-based
signature scheme to support set-based similarity functions. We
utilize the signatures to generate key-value pairs. To reduce
the transmission cost, we merge key-value pairs to significantly
reduce the number of key-value pairs, from cubic to linear com-
plexity, while not sacrificing the pruning power. To improve the
performance, we incorporate “light-weight” filter units into the
key-value pairs which can be utilized to prune large number of
dissimilar pairs without significantly increasing the transmission
cost. Experimental results on real-world datasets show that our
method significantly outperformed state-of-the-art approaches.

I. INTRODUCTION

Data integration has received significant attention in the last
three decades, because it can combine heterogenous data from
different sources and provide a unified view of these data.
The string similarity join, which, given two collections of
strings, finds all similar string pairs, is an essential operation in
data integration. The similarity between two strings is usually
quantified by similarity functions. There are two main types of
similarity functions (see Section II): set-based similarity func-
tions (e.g., Jaccard) and character-based similarity functions
(e.g., Edit distance). String similarity joins have many real-
world applications, e.g., entity resolution, copy detection, and
document clustering.

Most of existing similarity-join methods used in-memory
algorithms. The era of big data poses new challenges for
large-scale string similarity joins and calls for new scalable
algorithms. MapReduce provides a programming model for
processing large-scale data, and in this paper we study scalable
string similarity joins using MapReduce. A naive method is
to enumerate all string pairs from the two collections and
use MapReduce to process these string pairs. However this
method is rather expensive for large string sets. To address
this problem, Vernica et al. [14] proposed a prefix filtering
based method, which used a filter-and-verification framework.
In the filter step, they selected some tokens from each string
and generated a set of candidate pairs who share a common
token. In the verification step, they verified the candidate pairs
to generate the final answers. One big limitation of this method
is low pruning power. As a single token is very short and

usually has low selectivity, many dissimilar pairs will share a
same token and cannot be pruned.

To address this limitation, we propose a MapReduce-based
framework, called MASSJOIN, for scalable string similarity
joins, which supports both set-based similarity functions and
character-based similarity functions. We also adopt a filter-
and-verification framework. In the filter step, we generate
the signatures for each string and prove that two strings are
similar only if they share a common signature. We utilize
this property to generate the candidate pairs. In the verifi-
cation step, we verify the candidate pairs to generate the
final results. One big challenge is to generate high-quality
signatures. PASSJOIN [11] proposed a high-quality partition-
based signature scheme for the edit distance function. We
extend the partition-based signature scheme to support set-
based similarity functions. It is worth noting that the extension
is nontrivial (see Section III), because the partition number is
fixed for edit distance while the partition numbers for set-based
similarity functions are not.

To use MapReduce, we take the signatures as keys and
the strings as values to generate key-value pairs. Then we
use the key-value pairs to compute the candidate pairs that
share a same key (see Section IV). However this method
may generate large numbers of key-value pairs and leads to
huge transmission cost. For example, considering the Jaccard
function, this method generates O(`3) key-value pairs for a
string with length `. To address this issue, we merge key-value
pairs to significantly reduce the number of key-value pairs but
without sacrificing the pruning power (see Section V). For
example, we can reduce the number from O(`3) to O(`).

To improve the performance, we incorporate “light-wight”
filter units into the key-value pairs which can be utilized to
prune large numbers of dissimilar pairs without significantly
increasing the transmission cost (see Section VI).

In summary, we make the following contributions.
• We extend the partition-based signature scheme to sup-

port set-based similarity functions. We propose a scalable
MapReduce-based framework to support both set-based
and character-based similarity functions.

• We devise a merge-based algorithm to significantly re-
duce the number of key-value pairs without sacrificing
the pruning power.

• We develop a light-weight filter unit based method to
prune large numbers of dissimilar pairs while not signif-
icantly increasing the transmission cost.



• We have implemented our method and experimental
results on real-world datasets show that our method
significantly outperforms state-of-the-art approaches.

The structure of the rest paper is as follows. We formulate
our problem and review related works in Section II. We extend
existing partition-based signature scheme to support set-based
similarity functions in Section III. Section IV presents our
MASSJOIN framework. We devise a merge-based method to
reduce the number of key-value pairs in Section V and develop
a light-weight filter unit based method to reduce the number
of candidate pairs in Section VI. We show the experimental
results in Section VII and give the conclusion in Section VIII.

II. PRELIMINARY

A. Problem Definition

The similarity join problem finds all similar string pairs
from two given string collections, where the similarity between
two strings is usually quantified by similarity functions. Given
a similarity function SIM and a similarity threshold δ, two
strings r and s are similar if and only if SIM(r, s) ≥ δ. There
are two main types of similarity functions, set-based similarity
functions and character-based similarity functions.

Set-based similarity functions first tokenize each string into a
set of tokens, where a token can be either a word or a n-gram.
In the paper we suppose each token is a tokenized word. For
simplicity, strings and token sets are interchangeably used if
there is no ambiguous. There are three well-known set-based
similarity functions, Jaccard Similarity, Dice Similarity, and
Cosine Similarity, defined as below.

JAC(r, s)= |r∩s||r∪s| , COS(r, s)= |r∩s|√
|r|·|s|

, DICE(r, s)= 2|r∩s|
|r|+|s| ,

where | · | denotes the size of a set. For example, suppose
r =“Barack H Obama II” and s =“Barack Obama
II”. Then we have |r| = 4, |s| = 3, |r∩s| = 3, and |r∪s| = 4.
Thus, JAC(r, s) = 3

4 , COS(r, s) = 3√
12

and DICE(r, s) = 6
7 .

Character-based similarity functions are defined based on
the number of character operations to transform one string to
another. Edit Distance (ED) is a well-known character-based
similarity function. The ED of two strings is the minimum
number of edit operations needed to transform one string to
another, where the permitted edit operations include insertion,
deletion and substitution. For example, given r =“micheal”
and s =“michael”, we have ED(r, s) = 2.

Next we formulate the similarity-join problem.

Definition 1 (Similarity Joins): Given two string collec-
tions R and S, a similarity function SIM (or a distance func-
tion DIS) and a similarity threshold δ (or a distance threshold
τ ), a similarity join finds all string pairs 〈r ∈ R, s ∈ S〉 such
that SIM (r, s) ≥ δ (or DIS (r, s) ≤ τ ).

For example, consider the two string sets in Table I. Suppose
the Jaccard threshold is δ = 0.8. The similarity join finds a
similar pair 〈r2, s2〉 with JAC(r2, s2) = 0.8.

TABLE I
TWO STRING COLLECTIONS: R AND S

id string size

R
r1 conference on service information management 5
r2 policy on service information management 5
r3 the policy on service 4

S
s1 the conference on information management 5
s2 service information management policy 4
s3 conference on information management policy 5

B. Related Work

Partition-based Method: PASSJOIN [11], [10] is the state-of-
the-art similarity-join algorithm for edit distance. It won the
champion in the recent similarity-join competition organized
by EDBT 20131. PASSJOIN employs a filter-and-verification
framework. In the filter step, it generates signatures for strings.
If two strings are similar, they must share a common signature.
It prunes large numbers of dissimilar pairs based on this
idea and the survived pairs are called candidate pairs. In the
verification step, it verifies the candidate pairs to generate the
final answers.

One big challenge in PASSJOIN is to generate high-quality
signatures for two strings. Suppose the edit-distance threshold
is τ . Given two strings r and s, it partitions r into τ + 1
disjoint segments, and proves that if s is similar to r, s must
contain a substring that matches one of r’s segments, based
on the pigeon-hole theory. Thus for string r, it generates τ+1
signatures. For string s, it selects some substrings of s as its
signatures.

However PASSJOIN cannot support set-based similarity
functions, because the number of segments (e.g., τ + 1)
is not fixed for these functions. We extend PASSJOIN to
support set-based similarity functions and propose a scalable
framework MASSJOIN for large-scale string similarity join
using MapReduce. Moreover, to reduce the transmission cost,
we merge the selected substrings and decrease the number
of signatures from O(l3) to O(l) for set-based similarity
functions, where l is the string length, and from O(τ3) to
O(min(τ2, l)) for character-based similarity functions.

Similarity Join Using Map-Reduce: Vernica et al. [14]
proposed a similarity join method using MapReduce which
utilized the prefix filtering to support set-based similarity
functions. They selected a subset of tokens as signatures and
proved that two strings are similar only if their signatures
share common tokens. For each string, they used each token
in its prefix as a key and the string as a value to generate the
key-value pairs. As a single token is very short and usually
has low selectivity, these methods have two disadvantages.
First, many dissimilar pairs may share the same token, and
they will generate many false positives and thus lead to poor
pruning power. Second, a single token may lead to a skewed
problem and there may be large numbers of strings sharing the
same key. Thus the reducer with such keys will have a heavy
workload. Metwally et al. [12] proposed a 2-stage algorithm V-
SMART-Join for similarity joins on sets, multisets and vectors.
They also used a single token as a key and had the same

1http://www2.informatik.hu-berlin.de/∼wandelt/searchjoincompetition2013
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issues as [14]. Afrati et al. [1] proposed multiple algorithms
to perform similarity joins in a single MapReduce stage. They
analyzed the map, reduce and communication cost. However
for long strings, it is rather expensive to transfer the strings
using a single MapReduce stage. Kim et al. [9] addressed
the top-k similarity join problem using MapReduce, which is
different from our problem.

In-Memory Similarity Joins: There are many studies on
in-memory similarity join algorithms [19], [4], [15], [18],
[2], [8], [7], [6], [17], [16], [20], [21], [3], [13], [10], [20].
Bayardo et al. [3] first proposed the prefix-filter framework
for similarity joins. Xiao et al. [21] improved the prefix-filter
framework by introducing position filtering. ED-Join [19]
extended prefix filtering to support edit distance and used
location-based mismatch techniques to shorten prefixes and
content-based mismatch to filter dissimilar pairs. Wang et
al. [17] proposed an adaptive prefix-filter framework to dynam-
ically select prefixes with different lengths. Wang et al. [15]
proposed Trie-Join which utilizes a trie structure to recursively
perform prefix filter. Arasu et al. [2] proposed PartEnum
which partitions strings into pieces and enumerates deletion
neighborhoods on the pieces as signature to do similarity joins.
Wang et al. [18] proposed VChunkJoin to use qchunks with
different lengths as signatures and employ the prefix-filter
framework to do similarity joins. Wang et al. [16] devised
a new kind of similarity functions and proposed efficient
algorithm on the new similarity functions. Qin et al. [13]
proposed an asymmetric signature for both similarity join and
search problems. Chaudhuri et al. [4] proposed a primitive
operator for similarity joins. Gravano et al. [7] proposed
to perform similarity joins inside RDBMS. Xiao et al. [20]
studied top-k similarity joins using adaptive prefix filtering.
Jacox et al. [8] studied similarity joins under metric space.
Different from these studies, in this paper we focuses on how
to support large-scale similarity joins using MapReduce.

MapReduce: MapReduce [5] is a famous framework proposed
by Google to facilitate processing large-scale data in parallel.
The MapReduce program runs on a large cluster with multiple
nodes. The input data files are divided into small file splits
and distributed in a distributed file system (DFS). MapReduce
includes a map phase, a shuffle phase and a reduce phase to
process the data. Each map node reads the file splits on the
node, processes the input 〈key, value〉 pairs, and emits in-
termediate 〈key, value〉 pairs. The intermediate 〈key, value〉
pairs are shuffled based on the keys and transferred to the
reduce nodes. All the intermediate 〈key, value〉 pairs with
same key must be shuffled to the same reduce node. Each
reduce node receives a key-value pair 〈key, list(value)〉,
where list(value) is a list of values sharing the same key,
processes the pair, and writes its output to DFS.

III. SIGNATURES FOR SET-BASED SIMILARITY FUNCTIONS

To avoid enumerating all string pairs from the two given
string sets, we adopt a filter-and-verification framework. We
extend the partition-based signature scheme designed for edit

distance [11] to support set-based similarity functions in
this section. Notice that the extension is non-trivial, because
PASSJOIN relies on a given edit-distance threshold and gen-
erates a fixed number of signatures. However for set-based
similarity functions, the number depends on the string lengths.
We need to deduce the number of signatures and devise new
algorithms to generate signatures. To address this problem,
we first discuss how to generate signatures for two strings in
Section III-A and then extend the method to support two string
sets in Section III-B. Finally, we give the signature complexity
in Section III-C.

A. Signatures for Two Strings r and s

Given two token sets r and s, and a jaccard threshold δ, we
sort each token set based on a universal order, e.g., alphabetical
order, and obtain two sorted token lists. For simplicity, r and
s are referred to their corresponding sorted token lists if there
is no ambiguous. If r and s are similar w.r.t Jaccard threshold
δ, i.e., JAC(r, s) = |r∩s|

|r∪s| =
|r∩s|

|r|+|s|−|r∩s| ≥ δ, we can deduce
|r ∩ s| ≥ δ

1+δ (|r|+ |s|). The total number of different tokens
between r and s is |r−s|+ |s−r|. Since |r−s| and |s−r| are
two integers, |r− s| ≤ |r| − |r ∩ s| ≤ b |r|−δ|s|1+δ c and |s− r| ≤
|s|−|r∩s| ≤ b |s|−δ|r|1+δ c. Let U = b |r|−δ|s|1+δ c+b

|s|−δ|r|
1+δ c which

should be an upper bound of |r− s|+ |s− r|. We split r into
U + 1 disjoint segments. Based on the pigeon-hole theory, if
s is similar to r, s must contain a substring which matches a
segment of r. We use the segments of r as r’s signatures and
select some substrings of s as s’s signatures. Then if r and
s are similar, they must share a common signature. Next we
formally discuss how to generate the signatures for r and s.

Signatures for r: There are multiple ways to partition r into
U + 1 segments. Here we use an even partition scheme as
an example, where all U + 1 segments have nearly the same
length. Formally, given a string r with length ` = |r|, let
k = `−b `

U+1c∗ (U+1). The last k segments of string r have
a length of d `

U+1e and the first U + 1 − k segments have a
length of b `

U+1c. Let l(U + 1, i, `), abbreviated as l`i , denote
the length of the i-th segment of r. Obviously l`i = b `

U+1c if
i ≤ U+1−k; otherwise d `

U+1e. Let p(U+1, i, `), abbreviated
as p`i , denote the start position of the i-th segment, i.e., p`1 = 1
and p`i =

∑j<i
j=1 l

`
j+1. The i-th segment of r is the substring of

r starting from p`i and with length l`i , denoted by r[p`i , l
`
i ]. Thus

the signatures of r are triples 〈r[p`i , l`i ], i, `〉 for 1 ≤ i ≤ U+1.

Signatures for s: If s is similar to r, it requires to have a
signature matching one of signatures of r, e.g., 〈r[p`i , l`i ], i, `〉.
Thus the signature of s should be in the form of 〈s[x`i , l`i ], i, `〉
such that 〈r[p`i , l`i ], i, `〉 = 〈s[x`i , l`i ], i, `〉.

Intuitively, the start position of the i-th substring of s,
e.g., x`i , can be any integer in [1, |s| − l`i + 1]. However this
method will generate large numbers of signatures. To address
this issue, we propose two signature generation methods, a
position-aware method and a multi-match-aware method.

Position-aware method. Consider the i-th signature of r with
start position p`i , and a signature of s that matches the i-th
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signature of r with start position x`i . If x`i < p`i , we can deduce
that p`i−x`i ≤ |r−s|, because r and s are sorted by a universal
order, and if r[p`i , l

`
i ] = s[x`i , l

`
i ], among the first p`i−1 tokens of

r and the first x`i−1 tokens of s, there are at least p`i−x`i tokens
that appear in r and do not appear in s. Since there are totally
|r−s| such tokens, p`i−x`i ≤ |r−s| ≤ b

|r|−δ|s|
1+δ c. Let Ur−s =

b |r|−δ|s|1+δ c, we have p`i − x`i ≤ Ur−s and x`i ≥ p`i − Ur−s.
Similarly, if x`i ≥ p`i , we have x`i − p`i ≤ |s− r| ≤ b

|s|−δ|r|
1+δ c.

Let Us−r = b |s|−δ|r|1+δ c, we have x`i ≤ p`i + Us−r. Thus the
position-aware method sets x`i ∈ [p`i−Ur−s, p`i+Us−r] which
will not involve false negatives as stated in Lemma 1.

Lemma 1: The position-aware signature generation method
will not involve false negatives.2

Proof Sketch: We prove it by contradiction. Suppose r
and s are similar and s has a substring with start position x`i
matching the i-th segment of r and x`i < p`i−Ur−s. Obviously
|r− s| ≥ p`i −x`i > Ur−s which contradicts with that Ur−s ≤
|r − s|. Similarly we can prove x`i ≤ p`i + Us−r.

Multi-match-aware method. Still consider the i-th signature
of r with start position p`i , and a signature of s that matches
the i-th signature of r with start position x`i . We have x`i ≥
p`i−(i−1), because if x`i < p`i−(i−1), |r[1, p`i−1]−s[1, x`i−
1]| > i − 1 and there are at least i different tokens in r and
s before the i-th segment based on the length difference. In
other words, if they are similar, after the i-th segment, there
are at most U + 1 − i − 1 mismatch tokens. Since there are
U + 1− i segments, there must be a matching signature after
the i-th segment based on the pigeon-hole theory. Obviously
we can skip this one and use the latter one. Similarly, if we
consider the reversed strings of r and s, we have |s| − x`i ≥
|r| − p`i − (U + 1 − i). We can deduce that x`i ≤ p`i + |s| −
|r| + (U + 1 − i). Thus the multi-match-aware method sets
x`i ∈ [p`i − (i− 1), p`i + |s| − `+ (U + 1− i)] where ` = |r|,
and this method will not involve any false negative as stated
in Lemma 3.

Lemma 2: The multi-match-aware signature generation
method will not involve false negatives.

Proof Sketch: Consider any string r with length `. The
start position of its i-th segment is p`i . If the first i − 1
segments of r contain more than i − 1 different tokens from
s, regardless of the i-th segment, they must share another
common segment in the last U + 1− i segments and we can
drop the i-th segment. Meanwhile, if r and s are similar and
s contains a substring with start position x`i matching the i-
th segment of r, the number of different tokens in the first
i− 1 segments of r cannot be smaller p`i − x`i . Thus we have
p`i − x`i ≤ i − 1, i.e., x`i ≥ p`i − (i − 1). Symmetrically, we
can get x`i ≤ p`i + |s| − `+ (U + 1− i).

Interestingly, we can use the two methods simultaneously
and propose a hybrid method which sets x`i ∈ [max(p`i − (i−
1), p`i − Ur−s),min(p`i + |s| − ` + (U + 1 − i), p`i + Us−r)].

2For space constraints, we omit detailed proofs of lemmas in this paper

This hybrid method will not involve false negatives as stated
in Lemma 3, because the two methods are independent.

Lemma 3: The hybrid signature generation method will not
involve false negatives.

Proof Sketch: Based on Lemma 1, we have for any two
strings r and s, if s has a substring with start position x`i
matching the i-th segment of r and x`i 6∈ [p`i−Ur−s, p`i+Us−r],
|r − s| > Ur−s or |s − r| > Us−r. That is to say r and s
cannot be similar. Thus for any two similar strings, all there
matching signatures must be within the range generated by
the position-aware method. Similarly this claim is also true
for the multi-match-aware method. Thus the hybrid signature
generation method will not involve false negatives.

Thus the signatures of s with respect to r are 〈s[x`i , l`i ], i, `〉
for 1 ≤ i ≤ U + 1 and ⊥`i ≤ x`i ≤ >`i , where

⊥`i = max(p`i − (i− 1), p`i − Ur−s),

>`i = min(p`i + |s| − `+ (U + 1− i), p`i + Us−r).

Example 1: Consider two strings r1 and s1 in Table I.
Suppose the JAC threshold is δ = 0.8. To generate the
signatures for r1, we compute ` = |r| = 5, |s| = 5, U = 0,
p`1 = 1 and l`1 = 5, and obtain the signature 〈r1[1, 5], 1, 5〉 for
r1. To generate the signatures for s1, we compute Ur−s = 0,
Us−r = 0, ⊥`1 = 1, and >`1 = 1, and obtain the signature
〈s1[1, 5], 1, 5〉 for s1.

B. Signatures for Two String Sets

When we join two datasetsR and S, many strings inR may
be similar to many strings in S, and we need to generalize our
method to support two string sets.

Based on the length pruning, if a string s is similar to r,
i.e., |r∩s||r∪s| ≥ δ, we can deduce |s| ≤ |r ∪ s| ≤ |r∩s|

δ ≤ |r|
δ .

Similarly we can deduce |s| ≥ |r ∩ s| ≥ δ|r ∪ s| ≥ δ|r|. Thus
the upper bound of lengths of the possible similar strings to r
is b|r|/δc and the lower bound is dδ|r|e. Obviously for string
r we need to consider the strings with lengths in the range
and generate valid signatures of r for any possible similar
string s with length in [dδ|r|e, b|r|/δc]. To this end, we derive
an upper bound of the number of different tokens to r for
all possible similar strings that are similar to r, denoted by
U . Obviously U = max{|r − s| + |s − r|

∣∣s is similar to r}.
As |r − s| + |s − r| ≤ |r| + |s| − 2|r ∩ s| ≤ b 1−δ1+δ (|r| +
|s|)c ≤ b 1−δ1+δ (|r|+

|r|
δ )c = b

1−δ
δ |r|c, we can deduce a bound

U = b 1−δδ |r|c. Thus if a string s is similar to r, we have
|r − s| + |s − r| ≤ U . Notice that we can deduce a much
tighter bound of U for Jaccard as stated in Lemma 4.

Lemma 4: We can deduce a tighter upper bound U =
b |r|−δb|r|/δc1+δ c+ b b|r|/δc−δ|r|1+δ c.

Based on the upper bound U , we can devise a partition
scheme for two string sets as below.

Signatures for r ∈ R: We partition r into 4 = U + 1
segments as discussed in Section III-A. The signatures of r are
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TABLE II
BOUNDS FOR A SIMILAR STRING PAIR 〈r, s〉 WITHIN THRESHOLD δ

JAC COS DICE ED
Ur−s b |r|−δ|s|

1+δ
c b|r|−δ

√
|r||s|c b|r| − δ(|r|+|s|)

2
c -

Us−r b |s|−δ|r|
1+δ

c b|s|−δ
√
|r||s|c b|s| − δ(|r|+|s|)

2
c -

U Ur−s + Us−r -

U b 1−δ
δ
|r|c b 1−δ

2

δ2
|r|c b 2(1−δ)

δ
|r|c τ

4 b 1−δ
δ
|r|c+ 1 b 1−δ

2

δ2
|r|c+ 1 b 2(1−δ)

δ
|r|c+ 1 τ+1

Lo dδ|s|e dδ2|s|e d δ
2−δ |s|e |s|−τ

Lu b |s|
δ
c b |s|

δ2
c b 2−δ

δ
|s|c |s|+τ

gδ
1−δ
δ

1−δ2
δ2

2(1−δ)
δ

-

fδ
(1+δ3)(1−δ)3

δ3
(1+δ6)(1−δ2)3

δ6
16(1−δ)3(3δ2−6δ+4)

(2−δ)3δ3 -

triples 〈r[p`i , l`i ], i, `〉 for 1 ≤ i ≤ 4. Similarly, we can deduce
the bounds and signatures for other functions as shown in
Tables II-IV.

Signatures for s ∈ S: s may be similar to many strings in R.
Based on the length pruning, the upper bound of lengths of
the possible similar strings to s is Lu = b|s|/δc] and the lower
bound is Lo = dδ|s|e. Thus for s, we need to consider strings
with length ` ∈ [Lo, Lu] and generate signatures s[x`i , l

`
i ] for

each Lo ≤ ` ≤ Lu and 1 ≤ i ≤ 4.

In conclusion, the signatures generated are shown in Ta-
ble IV. Note that to make the formula consistent for different
similarity functions, we set Ur−s = ` − |s| + (4 − i) and
Us−r = i− 1 for ED.

Example 2: Consider the two string collections R and S in
Table I. Suppose the Jaccard Similarity threshold is δ = 0.8.
For r1 ∈ R, we can deduce ` = 5, U = 1, 4 = 2,
l`1 = 2, l`2 = 3, p`1 = 1 and p`2 = 3. Thus, we need
to generate two signatures 〈r1[1, 2], 1, 5〉 and 〈r1[3, 3], 2, 5〉
for r1. For string s1 ∈ S, we can deduce Lo = 4 and
Lu = 6, i.e., 4 ≤ ` ≤ 6. For ` = 4, we can deduce
that 4 = 2, l`1 = 2, l`2 = 2, Ur−s = 0, Us−r = 1,
⊥`1 = 1, >`1 = 2, ⊥`2 = 3 and >`2 = 4, thus it generates
four signatures 〈s1[1, 2], 1, 4〉, 〈s1[2, 2], 1, 4〉, 〈s1[3, 2], 2, 4〉
and 〈s1[4, 2], 2, 4〉. Similarly, for ` = 5, we generate two
signatures 〈s1[1, 2], 1, 5〉 and 〈s1[3, 3], 2, 5〉. For ` = 6, we
generate two signatures 〈s1[1, 3], 1, 6〉 and 〈s1[3, 3], 2, 6〉. In
total, we need to generate eight signatures for s1.

C. Signature Complexity

For string r ∈ S, as we generate one signature for 1 ≤
i ≤ 4, it totally has 4 signatures. For any string s, the total
number of its generated signatures is O((Lu − |s|)3 + (|s| −
Lo)

3) as shown in Lemma 5.
Lemma 5: The total number of signatures for any string s

is O((Lu − |s|)3 + (|s| − Lo)3).
For example, suppose we use JAC similarity and the sim-

ilarity threshold is δ, we have the total number of generated
signatures for string s is O( (1+δ

3)(1−δ)3
δ3 |s|3).

IV. THE MASSJOIN FRAMEWORK

In this section we present a scalable MapReduce-based
string similarity join algorithm, called MASSJOIN, which can
support both set-based similarity functions and character-based

TABLE III
SIGNATURES GENERATED FOR r ∈ R

JAC COS DICE ED
` |r|

l`i
b `4 c for i ≤ 4− (`− b `4 c ∗ 4)

d `4 e for i > 4− (`− b `4 c ∗ 4)

p`i p`1 = 1 and p`i =
∑j<i

j=1
l`j + 1

sig 〈r[p`i , l
`
i ], i, `〉 for 1 ≤ i ≤ 4

|sig| 4

TABLE IV
SIGNATURES GENERATED FOR s ∈ S

(FOR ED, Ur−s = `− |s|+ (4− i) AND Us−r = i− 1).

JAC COS DICE ED
` Lo ≤ ` ≤ Lu

l`i
b `4 c for i ≤ 4− (`− b `4 c ∗ 4)

d `4 e for i > 4− (`− b `4 c ∗ 4)

⊥`i max(p`i − (i− 1), p`i − Ur−s)
>`i min(p`i + |s| − `+ (4− i), p`i + Us−r)
sig 〈s[x`i , l

`
i ], i, `〉 for ⊥`i ≤ x

`
i ≤ >

`
i , 1 ≤ i ≤ 4, Lo ≤ ` ≤ Lu

|sig| fδ|s|3 τ3

similarity functions. For simplicity, we use Jaccard as an
example in this section. MapReduce contains two main stages:
the filter stage and the verification stage. We will introduce
the two stages respectively in Section IV-A and Section IV-B.
Then we give the complexity in Section IV-C. Finally we
discuss how to support self joins in Section IV-D.

A. Filter Stage

In this filter phase, we generate candidate pairs using the fil-
ter techniques in Section III: if two strings r and s are similar,
r and s must share a signature. In the map phase, we use the
signatures as keys and the strings as values. Thus for r ∈ R,
the key-value pairs are

〈
〈r[p`i , l`i ], i, `〉, r

〉
for 1 ≤ i ≤ 4.

For s ∈ S , the key-value pairs are
〈
〈s[x`i , l`i ], i, `〉, s〉 for

⊥`i ≤ x`i ≤ >`i , 1 ≤ i ≤ 4 and Lo ≤ ` ≤ Lu. As two
similar strings must share a same key, they must be shuffled
to the same reduce task. To reduce the transmission cost, in
the key-value pairs, we use string ids to replace strings (an id
is much smaller than its corresponding string.). The pseudo-
code of our MASSJOIN algorithm is shown in Algorithm 1. It
first generates key-value pairs for strings in R (lines 2-4) and
then for strings in S (lines 5-9).

In the reduce phase, each reduce node takes a key-value
pair 〈sig, list(sid/rid)〉 as input, where sig is a signature and
list(sid/rid) is the list of strings that contain the signature.
It first splits the list into two groups: list(sid) and list(rid)
(line 11). Notice that for any pair 〈sid, rid〉 from the two lists,
it is a candidate pair. To reduce the transmission cost, for each
sid ∈ list(sid), we generate a key-value pair 〈sid, list(rid)〉
(lines 12-13). The map and reduce functions are as follows.

map: 〈sid/rid, string〉 → 〈signature, sid/rid〉
reduce: 〈signature, list(sid/rid)〉 → 〈sid, list(rid)〉

Comparing with existing works [14], [12] that used a single
token as a key, our method utilizes signatures with multiple
tokes as keys and thus has higher pruning power. Moreover,
the number of pairs that share multiple tokens is smaller than
that of a single token, thus our method can address the skewed
token distribution problem as discussed in Section II-B.
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Algorithm 1: MASSJOIN Algorithm
// the filter stage

1 Map(〈rid, r〉/〈sid, s〉)
2 for r ∈ R do
3 for 1 ≤ i ≤ 4 do
4 emit(

〈
〈r[p`i , l`i ], i, ` = |r|〉, rid

〉
);

5 for s ∈ S do
6 for Lo ≤ ` ≤ Lu do
7 for 1 ≤ i ≤ 4 do
8 for ⊥`i ≤ x`i ≤ >`i do
9 emit(

〈
〈s[x`i , l`i ], i, `〉〉, sid

〉
);

10 Reduce (〈sig, list(id)〉)
11 split list(id) into two groups list(sid) and list(rid) ;
12 foreach sid ∈ list(sid) do
13 output(〈sid, list(rid)〉);

// first phase of verification stage
14 Map(〈sid, list(rid)〉/〈sid, s〉)
15 emit(〈sid, list(rid)〉); emit(〈sid, s〉) ;

16 Reduce (〈sid, list(list(rid)/s)〉)
17 Identify s and list(list(rid)) ;
18 Compute distinct list(rid) from list(list(rid)) ;
19 output 〈s, list(rid)〉 ;

// second phase of verification stage
20 Map(〈s, list(rid)〉/〈rid, r〉)
21 emit(〈rid, r〉) ;
22 for each rid in list(rid) do
23 emit(〈rid, s〉) ;

24 Reduce (〈rid, list(s/r)〉)
25 Identify r and list(s) from list(s/r);
26 foreach s ∈ list(s) do
27 if SIM(r, s) ≥ δ then output(

〈
〈r, s〉, SIM(r, s)

〉
);

Example 3: Consider the two string collections in Table I.
Suppose we use JAC function and the threshold is δ = 0.8.
Figure 1 shows the running example. The map functions in the
filter stage generate 2 key-value pairs for each r1, r2 and r3
in R and 8, 4, and 8 key-value pairs for s1, s2 and s3 in S as
shown in the figure. The shuffle phase groups the intermediate
〈key, value〉 pairs and sends them to the reduce tasks. In
the reduce phase, we get 18 key-value pairs. However only
two of them, 〈[“conference information”, 1, 5], {r1, s1, s3}〉
and 〈[“information management”, 1, 5], {r2, s2}〉 can gener-
ate outputs, which are 〈s1, {r1}〉, 〈s2, {r2}〉, and 〈s3, {r1}〉.

B. Verification Stage
In the verification stage, we verify the candidate pairs

generated from the filter stage. As two strings may share
multiple signatures, there may be many duplicate candidate
pairs, and we want to remove the duplicate ones. In addition,
we need to replace the id in candidate pairs with its real string
to verify the candidate pairs. To achieve these two goals, we
propose a two-phase method.

In the first phase, the map function takes dataset S and
〈sid, list(rid)〉 as input and emits two types of key-value pairs

(line 15). The first one is 〈sid, s〉 from the dataset S which is
used to replace sid with string s. The second one is 〈sid, rid〉
which is generated from input 〈sid, list(rid)〉 gotten from the
filter stage. The reduce function gathers the list list(rid) and
the string s for the key sid. It first identifies the string s, and
then removes the duplicates from list(rid) to generate a list
of distinct rids, and finally emits key-value pair 〈s, list(rid)〉
(lines 17-19). The map and reduce functions are as follows.

map: 〈sid, list(rid)〉 → 〈sid, list(rid)〉; 〈sid, s〉 → 〈sid, s〉
reduce: 〈sid, list(list(rid)/s)〉 → 〈s, list(rid)〉

In the second phase of verification, we need to replace the
rid with string r and verify the candidate pairs. The map
function takes dataset R and 〈s, list(rid)〉 as input and emits
two types of key-value pairs: 〈rid, r〉 and 〈rid, s〉. The first
one is generated from the dataset R (line 21). The second one
is generated from 〈s, list(rid)〉 that is the output of the first
phase. For each key s, it generates a key-value pair 〈rid, s〉 for
each rid in list(rid) (line 23). In the reduce phase, we have
a string r and a list of string s such that 〈r, s〉 is a candidate
pair. We first identify the string r and list(s), then verify the
candidate pairs, and finally output the final results (lines 25-
27). The map and reduce functions are as follows.

map: 〈s, list(rid)〉 → 〈rid, s〉, 〈rid, r〉 → 〈rid, r〉;
reduce:〈rid, list(r/s)〉 → 〈(r, s), SIM(r, s)〉

Example 4: Recall the running example in the last sub-
section and here we discuss the verification stage. In
the filter step, we get three candidate pairs. In the first
phase, we remove duplicates from the three pairs, re-
place sid with its string and output the key-value pairs,
e.g., 〈“service information management policy”, {r2}〉. In
the second phase, we replace rid with its string and verify
the candidate pairs. Finally, we output 〈r2, s2〉 as a result.
The details are shown in Figure 1.

C. Complexity
In this section, we analyze the complexity of our approach

in each stage, including the space/time complexity and IO
cost of the map and reduce phase, and the transmission
complexity of the shuffle phase. For each string with length
` in R, we need to generate O(U) = O(gδ`) signatures,
where gδ is the factor of ` in the formula of U as illus-
trated in Table II. For each string with length ` in S, we
generate O((Lu − `)3 + (` − Lo)

3) = O(fδ`3) signatures
where fδ is the factor of `3 in (Lu − `)3 + (` − Lo)

3 as
illustrated in Table II. Let m` (n`) denote the number of the
strings with length ` in R (S). Based on the discussion in
Section III, the number of generated signatures for strings
in R (S) is O(

∑`Rmax

`=`R
min

gδ`m`) (O(
∑`Smax

`=`S
min

fδ`
3n`)), where

`Rmin (`Smin) and `Smax (`Smax) are the minimum and maximum
string lengths in R (S) respectively. For ease of presentation,
let N =

∑`Rmax

`=`R
min

gδ`m` and M =
∑`Smax

`=`S
min

fδ`
3n`.

Filter Stage: The map function loads the dataset from DFS
and the IO cost is O(R + S). The space/time complexity

6
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Fig. 1. Running example

of generating one signature is O(1), thus the space/time
complexity of the first map phase is O(N +M). As we emit
one intermediate 〈key, value〉 pair for each signature and the
space of each signature is O(1), the transmission complexity
is also O(N +M). The reduce step needs to scan the lists of
rids and sids in the value fields of the key-value pairs, thus
the time/space complexity of the reduce phase is O(N ×M).
The reduce step writes the candidate pairs to disk, thus the IO
cost is also O(N ×M).

Verification Stage: The map function of the filter phase needs
to read the dataset S and the candidate pairs, thus the IO
cost is O(N ×M + S). Emitting a 〈key, value〉 takes O(1)
time, and the space/time complexity is O(N ×M + |S|). The
shuffle transmission complexity is also O(N ×M + S). The
reduce function scans the input value list once and the time
complexity is O

(
N ×M + |S|). As we at most output each

original string in S once, the IO cost is O(N ×M + S).
Suppose there are c distinct candidate pairs generated from

the filter reduce of the verification stage, and the average
size of the strings in S is Savg . As each candidate pair
contains a string in S, the IO complexity for this map phase
is O(cSavg + R). The time complexity of the third map is
O(c+ |R|). As each candidate pair contains a string of S, the
shuffle transmission complexity is O(cSavg + R). Suppose
the average verification time for each candidate pair is v. The
time complexity of the third reduce is O(cv). The IO cost in
this stage is O

(
c(Ravg +Savg)

)
. We show all the complexity

analysis in Table V.

D. Supporting Self-Join

The MASSJOIN algorithm can inherently support the self-
join scenario where two datasets are the same, i.e., R = S.
In this case, for each string r, we first take its segments as
segment signatures and then select its substrings for strings
with length between Lo and |r| as substring signatures (taking
it as s). We can use a special mark to differentiate segment
signatures and substring signatures. In this case, we can
support self joins.

V. MERGING KEY-VALUE PAIRS

Based on the complexity analysis in Section IV-C, the basic
framework generates large numbers of signature-based key-

value pairs for string s ∈ S in the filter stage. In this section,
we discuss how to reduce the number of key-value pairs
without sacrificing the pruning power. For example, we can
decrease the number from O(|s|3) to O(|s|) for the Jaccard
function. To achieve this goal, we first introduce how to merge
key-value pairs in Section V-B, and then devise an efficient
merging algorithm in Section V-B, and finally discuss how to
incorporate the method into our framework in Section V-C.

A. Merging Key-Value Pairs

For simplicity, the key-value pairs in this section refer to
those generated from the map phrase in the filter stage.

Basic Idea. The basic framework will generate large numbers
of key-value pairs for s ∈ S:

〈
〈s[x`i , l`i ], i, `〉, s〉 for ⊥`i ≤ x`i ≤

>`i , 1 ≤ i ≤ 4 and Lo ≤ ` ≤ Lu. We aim to merge them
to generate a small number of key-value pairs. Obviously if
two signatures match, e.g., 〈r[p`i , l`i ], i, `〉 = 〈s[x`i , l`i ], i, `〉, the
segment r[p`i , l

`
i ] and the substring s[x`i , l

`
i ] must match, i.e.,

r[p`i , l
`
i ] = s[x`i , l

`
i ]. One simple method is to take 〈s[x`i , l`i ], s〉

as key-value pairs for s and 〈r[p`i , l`i ], r〉 as key-value pairs for
r. Obviously, if r and s are similar, they must share a same
key and the method will not miss a similar pair.

However, this method may reduce the pruning power. This
is because a substring and a segment may match with different
start positions, or with different lengths. Both cases will
generate more false positives. To achieve the same pruning
power as the basic framework, we need to check whether the
start position x`i of the substring s[x`i , l

`
i ] is within [⊥`i ,>`i ]

as well as whether the length of |r| is within [Lo, Lu]. These
bounds are different for various i and `, and it is expensive to
add them into the key-value pairs. Fortunately, these bounds
can be efficiently computed just based on the values of i and
` in O(1) time.

For each key-value pair 〈s[x`i , l`i ], s〉 of s, we add x`i
and |s| into its value field and the new key-value pair is〈
〈s[x`i , l`i ]〉, 〈|s|, x`i , s〉

〉
. For each key-value pair 〈r[x`i , l`i ], r〉

of r, we add i and ` = |r| in its value field and the
key-value pair is

〈
〈r[p`i , l`i ]〉, 〈i, `, r〉

〉
. In the map phase, we

generate these new key-value pairs. In the reduce phase, for
two matching keys r[p`i , l

`
i ] = s[x`i , l

`
i ] with values 〈i, `, r〉 and

〈|s|, x`i , s〉, we first calculate ⊥`i , >`i , Lo and Lu based on `,
i and |s| in the value fields and δ from the configuration file.
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TABLE V
COMPLEXITY ANALYSIS OF MASSJOIN (R/S ARE THE DATASET SIZES AND |R|/|S| ARE THE NUMBERS OF STRINGS IN R/S).

Stage Filter stage First phase of the verification stage Second phase of the verification stage

map Time/Space O(N +M) O(N ×M + |S|) O(c+ |R|)
IO O(R+ S) O(N ×M + S) O(cSavg +R)

shuffle Trans O(N +M) O(N ×M + S) O(cSavg +R)

reduce Time/Space O(N ×M) O(N ×M + |S|) O(cv)

IO O(N ×M) O(N ×M + S) O
(
c(Ravg + Savg)

)
Then we check if Lo ≤ ` ≤ Lu and ⊥`i ≤ x`i ≤ >`i . If yes,
we output this pair as a candidate pair.

It is easy to prove that the method using
〈
〈r[p`i , l`i ]〉, 〈i, `, r〉

〉
and

〈
〈s[x`i , l`i ]〉, 〈|s|, x`i , s〉

〉
as keys generates the same

candidate pairs as that using
〈
〈r[p`i , l`i ], i, `〉, r〉 and〈

〈s[x`i , l`i ], i, `〉, s〉 as keys.
It is worth noting that this method can significantly reduce

the number of key-value pairs. Given any string s ∈ S, for set-
based similarity functions, we can reduce the number of key-
value pairs from O(fδ|s|3) to O(|s|) as stated in Lemma 6.

Lemma 6: Given a string s and a set-based similarity func-
tion threshold δ, the number of key-value pairs in the merge-
based method is O(|s|).

Proof Sketch: Here we use JAC as an example. For any
string s and any JAC similarity threshold δ, `

4 is monotonically
increasing with the increasing of `, thus the minimum and
maximum value of l`i is bLo

4 c and dLu

4 e respectively. dLu

4 e −
bLo

4 c + 1 ≤ bLu

4 −
Lo

4 c + 3 ≤ 4. Thus there are at most 4
different values of l`i . Since x`i must be in [1, |s|], there are
at most O(|s|) keys. Moreover, each key s[x`i , p

`
i ] can solely

determine the value 〈|s|, x`i , sid〉. Thus the number of key-
value pairs is O(|s|). Similarly, we can prove this lemma for
COS and DICE functions.

We can also prove that for ED, the number of key-value
pairs in this merge-based method is O

(
min(|s|, τ2)

)
. This is

formalized in Lemma 7.

Lemma 7: Given a string s and a ED threshold τ , the
number of key-value pairs in the merge-based method is
O
(
min(|s|, τ2)

)
.

Proof Sketch: Based on the similar idea in Lemma 6,
we can prove that the number of key-value pairs generated by
s is bounded by O(|s|). Next we prove the number of key-
value pairs is also bounded by O(τ2). For any string s and
threshold τ , `

4 is monotonically increasing, thus the range of
l`i is

[
bLo

4 c, d
Lu

4 e
]
. As dLu

4 e − b
Lo

4 c + 1 ≤ b 2τ+1
τ+1 c + 3 ≤ 4,

the size of the range of l`i is at most 4. We also find that the
size of the range of x`i is at most 2τ +4 for all Lo ≤ ` ≤ Lu
and a fixed i ∈ [1,4]. Thus the total number of possible x`i
is O(τ2). Thus the number of key-value pairs is also bounded
by O(τ2).

B. Merge Algorithm

For sting r, it is easy to generate its key-value pairs〈
〈r[p`i , l`i ]〉, 〈i, |r|, r〉

〉
for i ∈ [1,4]. For string s, a straight-

forward method enumerates all signatures for s as discussed in
Section III-C and then merges them with the same 〈s[x`i , l`i ]〉.
However, the time complexity of this method is O(fδ|s|3).

Here we study how to efficiently merge the original key-value
pairs to obtain the new key-value pairs for string s.

As proved in Lemma 6, there are only four different values
for l`i . As x`i is a position in string s, x`i ∈ [1, |s|]. Then we
can devise an efficient algorithm to directly generate the new
key-value pairs as follows. For x`i ∈ [1, |s|] and for each l`i , we
generate a key-value pair

〈
〈s[x`i , l`i ]〉, 〈|s|, x`i , s〉

〉
. Obviously

the time complexity is O(|s|). 3

Complexity Improvement. The merge-based method can
reduce the number of key-value pairs for s from O(|s|3) to
O(|s|). The total number of key-value pairs for all strings in
S is from

∑`Smax

`=`S
min

fδ`
3n` to

∑`Smax

`=`S
min

`n`. The time/space
complexity to generate the key-value pairs for string s is also
from O(|s|3) to O(|s|).

C. Changes on MASSJOIN Algorithm

This section discusses the changes we need to make for
incorporating the merge-based method into our MASSJOIN
framework. The pseudo-code shown in Algorithm 2 is the
same as Algorithm 1 except for the filter stage. To generate
the new key-value pairs, we replace Line 4 and Lines 6-9
in Algorithm 1 with Line 2 and Lines 3-5 in Algorithm 2
respectively. For each string s ∈ S , we only need to scan
the string once to generate all key-value pairs (Lines 3-5).
In the reduce phrase, we still split the input value lists into
two lists and output those pairs satisfying Lo ≤ ` ≤ Lu and
⊥`i ≤ x`i ≤ >`i (Lines 7-12).

Example 5: Consider the strings r3 and s3 in Ta-
ble I. Using the merge-based algorithm, we generate t-
wo key-value pairs for r3, i.e.,

〈
〈r3[1, 2]〉, 〈1, 4, r3〉

〉
and〈

〈r3[3, 2]〉, 〈2, 4, r3〉
〉
, and six key-value pairs for s3,

i.e.,
〈
〈s3[1, 2]〉, 〈5, 1, s3〉

〉
,
〈
〈s3[2, 2]〉, 〈5, 2, s3〉

〉
,
〈
〈s3[3, 2]〉,

〈5, 3, s3〉
〉
,
〈
〈s3[4, 2]〉, 〈5, 4, s3〉

〉
,
〈
〈s3[1, 3]〉, 〈5, 1, s3〉

〉
, and〈

〈s3[3, 3]〉, 〈5, 3, s3〉
〉
. Note that for the basic method, we

generate eight key-value pairs for s3, thus the merge-based
algorithm reduces the transmission cost of two key-value pairs.
When using the key-value pairs to generate the candidate pairs,
although r3[1, 2] = s3[4, 2], we do not output 〈r3, s3〉 since
4 6∈ [⊥4

1 = 1,>4
1 = 2].

VI. USING LIGHT-WEIGHT FILTER UNIT TO REDUCE
CANDIDATE PAIRS

As the transmission and computation cost in the verification
stage heavily relies on the number of candidate pairs, in this
section, we aim to decrease the number of candidate pairs.
One simple method is to attach the original strings to the

3Although this method may generate more key-value pairs than the straight-
forward method, the complexity is still O(|s|). In the reduce step, we can
remove such pairs based on the checking method in Section V-B.
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Algorithm 2: Merge-based Algorithm
// the filtering stage

1 Map(〈rid, r〉/〈sid, s〉)
// Replace Line 4 in Algo 1 with

2 emit(
〈
〈[p`i , l`i ], 〈i,|r|,rid〉

〉
) ;

// Replace Lines 6∼9 in Algo 1 with
3 for 1 ≤ x`i ≤ |s| − ` do
4 for bLo

4 c ≤ l
`
i ≤ dLu

4 e do
5 emit(

〈
〈s[x`i , l`i ]〉, 〈|s|, x`i , sid〉

〉
);

6 Reduce (〈sig, list(〈i, `, rid〉/〈|s|, x`i , sid〉)〉)
7 split list(〈i, `, rid〉/〈|s|, x`i , sid〉) into two groups

list(〈i, `, rid〉) and list(〈|s|, x`i , sid〉);
8 foreach 〈|s|, x`i , sid〉 ∈ list(〈|s|, x`i , sid〉) do
9 foreach 〈i, `, rid〉 ∈ list(〈i, `, rid〉) do

10 if Lo ≤ ` ≤ Lu & ⊥`i ≤ x ≤ >`i then
11 list(rid)← rid;

12 output(〈sid, list(rid)〉);

value field of each 〈key, value〉 pair in the map phase of filter
stage. In the reduce phase, for each candidate pair, we calculate
their real similarity and remove those pairs whose similarity
is smaller than the threshold δ. Although this method can
reduce the transmission cost of candidate pairs, it increases the
transmitting cost of original strings dramatically. To alleviate
this problem, we incorporate an “light-weight filter unit” to
replace the original strings. On one hand, filter units can be
utilized to prune many dissimilar pairs. On the other hand,
filter units should be light-weight in order not to significantly
increase the transmission cost. To this end, we propose an
effective filter unit in Section VI-A, and then discuss how
to integrate this technique into our MASSJOIN framework in
Section VI-B.

A. Light-weight Filter Unit

Basic Idea. We first consider the set-based similarity func-
tions. Given a string, we can use an integer to replace each
token in the string and take the set of integers as the filter
unit of the string. Obviously two strings are similar only if
their corresponding integer sets are similar. However when
the number of tokens is large, this method still involves large
transmission cost. To reduce the size, we can group the integers
into n buckets and keep a list of n integers as a filter unit.

Formally, we first partition all tokens in the two string sets
into n groups, G1,G2, · · · ,Gn. Then for each string r(s), its
filter unit is 〈gr1, gr2, · · · , grn〉(〈gs1, gs2, · · · , gsn〉), where gri (g

s
i )

is the number of tokens in r(s) that are in the i-th group, i.e.,
gri = |Gi ∩ r|(gsi = |Gi ∩ s|). Two strings r and s are similar
only if

∑
1≤i≤n |gri − gsi | ≤ U as stated in Lemma 8, where

U is an upper bound of |r − s|+|s− r| (Section III-A).

Lemma 8: Given two strings r and s with filter unit
〈gr1, gr2, · · · , grn〉 and 〈gs1, gs2, · · · , gsn〉, if

∑
1≤i≤n |gri − gsi | >

U , r and s cannot be similar.
Proof Sketch: We divide r and s into n disjoint groups

Algorithm 3: Light-weight Filtering
// the token count stage

1 Map(〈id, string〉)
2 For each token in the string, emit(〈token, 1〉);
3 Reduce (〈token, list(1)〉)
4 Output token frequency tf ;

// the filtering stage
5 MapSetup
6 Partition tokens into n groups ;

7 Map(〈rid, r〉/〈sid, s〉)
// Add into Algo 1

8 Compute filter unit gr/gs for strings r/s;
// Replace Line 4 in Algo 1 with

9 emit(
〈
〈r[p`i , l`i ], i, ` = |r|〉, 〈rid, gr〉

〉
);

// Replace Line 9 in Algo 1 with
10 emit(

〈
〈s[x`i , l`i ], i, `〉〉, 〈sid, gs〉

〉
);

11 Reduce (〈sig, list(〈id, g〉)〉)
12 list(〈id, g〉)→ list(〈sid, gs〉) and list(〈rid, gr〉);
13 foreach 〈sid, gs〉 ∈ list(〈sid, gs〉) do
14 foreach 〈rid, gr〉 ∈ list(〈rid, gr〉) do
15 if

∑
1≤i≤n |g

r
i − gsi | ≤ U then

16 list(rid)→ rid;

17 output(〈sid, list(rid)〉);

using a universal grouping method. The total number of
different tokens between r and s is the sum of the number of
different tokens in the n groups. For the i-th group, the number
of different tokens in it is |Gi∩r−Gi∩s|+|Gi∩s−Gi∩r| = |Gi∩
r|+ |Gi∩s|−2|(Gi∩r)∩(Gi∩s)| ≤ gri +gsi −2max(gri , g

s
i ) =

|gri −gsi |. Thus the total number of different tokens between r
and s cannot be smaller than

∑
1≤i≤n |gri − gsi |. Meanwhile,

the number of different tokens in two similar strings cannot
exceed U (see Section III-A). Thus if

∑
1≤i≤n |gri − gsi | > U ,

r and s are not similar.

To utilize the filter unit, we add the filter unit into the value
part in the key-value pair of the map function in the filter
stage. As discussed in Section III-A, the upper bound U only
depends on |r|, |s| and δ. Obviously |r| =

∑
1≤i≤n g

r
i and

|s| =
∑

1≤i≤n g
s
i , thus we can compute U in the reduce step.

Thus we can utilize the filter condition to prune dissimilar
pairs. Notice that the filter unit based method is orthogonal to
the merge-based method and they can be used together.

This method can be applied to the character-based similarity
functions by taking each character as a token and U = 2τ .

Finding the Optimal Grouping Strategy. We find that
different grouping methods may have different pruning power.
Next we study how to evaluate a grouping strategy and how
to select the optimal grouping so as to generate high-quality
filter unit.

Intuitively, for two strings r and s, the larger
∑

1≤i≤n |gri −
gsi |, the two strings have higher probability to be pruned. Thus
we want to maximize the value. Similarly, for all strings in
R and S, we want to find an optimal grouping strategy to
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maximize ∑
r∈R

∑
s∈S

∑
1≤i≤n

|gri − gsi |. (1)

We can prove that the optimal grouping problem is NP-hard
by a reduction from the 3-SAT problem.

Theorem 1: The optimal grouping problem is NP-hard.
Proof Sketch: We can prove the problem by a reduction

from the 3-SAT problem.

We propose a heuristic approach to solve this problem. The
approach is based on two observations. First, it is not good
to put two tokens with large token frequencies into the same
group, where the token frequency is the number of strings
containing the token. This is because if we put them into the
same group, many string pairs will falsely consider them as
the same token and the value |gri − gsi | for such string pairs
will not increase; on the contrary, if they are assigned into
two different groups, the value will be significantly increased.
Second, the sum of token frequencies is a constant. To make
the overall value as large as possible, we want to make the
sum of token frequency in each group nearly equal. Based on
these two observations, we can devise a greedy algorithm as
follows. We first sort all the tokens by their frequencies in
decreasing order. Then we access each token in order and add
it into the group with the minimum sum of token frequencies.
We repeat this step until all the tokens have been accessed.

B. Changes on the MASSJOIN Algorithm

To incorporate filter units into our method, we need make
some changes on the MASSJOIN algorithm. The method can
be utilized to both the basic method and the merge-based
method. Here we take the basic method as an example. The
pseudo-code is shown in Algorithm 3. We need to add another
MapReduce phase to count token frequencies (Lines 1-4). We
also modify the filter stage (Lines 5-17) as follows. We add a
setup phase to read the token frequency and an approximation
algorithm to divide all the tokens to n groups (Line 6). In the
map phase, we load the token frequency, identify the tokens
for each string, partition them into different groups based on
token frequencies, and generate filter unit (Line 8). Then we
emit the filter unit along with the 〈key, value〉 pairs (Lines 9-
10). In the reduce step, we only output those pairs passing the
grouping filter (Lines 12-17).

Example 6: Consider the two datasets in Table I. We use
JAC and the threshold is δ = 0.8. For simplicity, we use the ids
of strings as shown in Figure 1. In the token count stage we
get the token frequencies, 〈w2, 5〉, 〈w3, 5〉, 〈w4, 5〉, 〈w5, 4〉,
〈w6, 4〉, 〈w1, 3〉 and 〈w7, 2〉. Suppose the group number is 4.
We can divide the tokens into 4 groups G1 = {w2, w7}, G2 =
{w3, w1}, G3 = {w4}, and G4 = {w5, w6}. The filter unit
for r1 is 〈1, 2, 1, 1〉 and that for s1 is 〈2, 2, 1, 0〉. We filter pair
〈s1, r1〉 in the reduce phase as

∑4
i=1 |g

r1
i −g

s1
i | = 2 > U = 0.

VII. EXPERIMENT

We have implemented our MASSJOIN method and conduct-
ed experiments on four real datasets: Enron email4, PubMed
paper abstract, PubMed paper title5 and NCBI DNA se-
quence6. The details of the datasets are shown in Table VI.

TABLE VI
DATASETS

Datasets Size(MB) Cardinality Avg Size/Len |Σ|
Enron Email (Set) 1425 516,717 383.7 36

PubMed Abstract (Set) 3159 2,347,362 195.6 36
PubMed Title (String) 1494 10,394,374 144.4 36

DNA Sequence (String) 2148 18,299,728 117.2 5

For Enron email and PubMed paper abstract datasets, we
used set-based similarity functions, where strings are tokenized
by non-alphanumeric characters. For PubMed paper title and
DNA datasets, we used the character-based distance functions.
In the following experiments, we split each dataset into two
datasets with equal size to conduct R-S join. Due to space
constraints, we focus on JAC and ED in the experiments and
use them as default functions. We will show the results on
COS and DICE in Section VII-D.

We compared with state-of-the-art method PrefixFilter

[14]. We got their source code from their home page (as-
terix.ics.uci.edu/fuzzyjoin). All algorithms were implemented
on Hadoop and run on a 10-node Dell cluster. Each node
had two Intel(R) Xeon(R) E5420 2.5GHZ processors with 8
cores, 16GB RAM, and 1TB disk. Each node is installed 64-bit
Ubuntu Server 10.04, Java 1.6, and Hadoop 1.0.4. We set the
block size of the distributed file system to 16MB and allocate
2GB virtual memory to each task.
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Fig. 2. Evaluating light-weight filter units.

A. Evaluating Our Proposed Techniques

We first evaluated our filter unit based method by varying
different group numbers from 10 to 150. We implemented two
grouping methods: Random and Greedy. Random computed the
hash code of each token and randomly assigned it into a group.
Greedy used our greedy algorithm. Figure 2 shows the results.
We can see that with the increase of groups, the performance
of Greedy improved first and then depraved. This is because
a small group number will reduce the transmission cost but
with lower pruning power, and a large group number will
improve the pruning power but with large transmission cost.

4https://www.cs.cmu.edu/∼enron/
5http://www.ncbi.nlm.nih.gov/pubmed
6http://www.ncbi.nlm.nih.gov/guide/dna-rna/
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In addition, our algorithm outperformed the Random grouping
method since we considered the token distribution. In the
remainder experiments, we used the Greedy algorithm and
set the group number to 30.

We then evaluated our merge-based and filter unit tech-
niques. We implemented four algorithms: our basic algorithm
(Basic), merge-based algorithm (Merge), light-weight filter
algorithm (Light), and MASSJOIN with both merge-based and
light-weight filter techniques (Merge+Light). Figure 3 shows
the elapsed time for each algorithm, including the running time
of different MapReduce phases. Notice that on the Enron and
PubMed abstract datasets, Basic and Light did not finish
within 20 hours, because they had to generate large numbers of
key-value pairs (O(`3)). Light and Merge+Light addressed
this problem by merging the key-value pairs. On the PubMed
title and DNA datasets, Basic and Light worked well because
for ED the number of key-value pairs is not large (O(τ3)).
Notice that on all datasets, Merge+Light achieved the highest
performance, because it merged the key-value pairs to reduce
transmission cost and used filter units to reduce the number
of candidate pairs. In the remainder experiments, we used the
Merge+Light as the default algorithm for MASSJOIN.

B. Comparison with State-of-the-art Method
We compared our algorithm with state-of-the-art method,

PrefixFilter [14], VSMARTJoin [12] and FuzzyJoin [1].
For PrefixFilter, we used its source code on set-based sim-
ilarity functions and extended the code to support character-
based functions using the technique in ED-Join [19] to gen-
erate prefixes and the technique in PassJoin [11] to verify the
results. We also implemented VSMARTJoin and FuzzyJoin.
However they were always out of memory because they
generated large numbers of key-value pairs. Thus we did not
include them in our experiment. Since PrefixFilter took
rather long time on our large datasets, we used the 0.6x
datasets, where is gotten by randomly sampling 60% of the
original dataset. Figure 4 shows the results. Note that on the
PubMed title dataset, PrefixFilter did not finish within 30
hours. We can see that our method significantly outperformed
PrefixFilter, even by 1 to 2 orders of magnitude. For
example, on PubMed paper title dataset with Edit Distance
threshold τ = 6, PrefixFilter took 50,000 seconds while
MASSJOIN only took 500 seconds. This main reason is that
their signatures are less selectivity than our algorithm and they
generated large numbers of key-value pairs. In the verification
stage, they involved much transmission and computation time.
In addition, we used filter units to reduce candidate pairs.

C. Speedup

We evaluated the speedup of our algorithm by varying the
number of nodes from 2 to 10. The experimental results are
shown in Figure 5. We can see that with the increase of nodes
in the cluster, the performance of our algorithm significantly
improved. For example, on the Enron email dataset with
similarity threshold δ = 0.75, the running time on the cluster
with 2,4,6,8,10 nodes are 3600 seconds, 1900 seconds, 1400

seconds, 1200 seconds, and 1000 seconds respectively. This
is attributed to our effective signatures which can significantly
prune dissimilar pairs and avoid enumerating all pairs.

D. Scaleup
We evaluated the scaleup of our algorithm by increasing

both dataset sizes and numbers of nodes in the cluster.
Figure 6 shows the results. It is worth noting that as the
dataset increased, the number of results will be increased
by quadratic, especially for small thresholds for set-based
similarity functions and large thresholds for character-based
similarity functions. Thus the running time increased slightly.
For example, on the PubMed title dataset, when the Edit
Distance threshold is τ = 8, the running time on 2-node
cluster and with 0.2x dataset is about 300 seconds; on 10-node
cluster and with 1x dataset the time is about 900 seconds.

We also evaluated the scaleup on the other two set-based
similarity functions COS and DICE. Figure 7 shows the results
on the PubMed abstract dataset. MASSJOIN got similar results
on COS and DICE as JAC because their difference is the
verification method which took little time.
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Fig. 7. Evaluating set-based similarity functions.

VIII. CONCLUSION

We proposed a MapReduce-based framework for scalable
string similarity joins, which supports both set-based simi-
larity functions and character-based similarity functions. We
extended existing partition-based signature scheme to support
set-based similarity functions. We utilized the signatures to
generate key-value pairs on MapReduce. We proposed a
merge-based method to significantly reduce the number of key-
value pairs without sacrificing the pruning power. To improve
the performance, we incorporated light-weight filtering units
into key-value pairs to reduce the number of candidate pairs
while not significantly increasing the transmission cost. Exper-
imental results on real-world datasets show that our method
outperforms state-of-the-art approaches.
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