
Building Data Civilizer Pipelines with an Advanced Workflow Engine

Essam Mansour˛ Dong Deng˚ Raul Castro Fernandez˚ Abdulhakim A. Qahtan˛ Wenbo Tao˚ Ziawasch Abedjan:

Ahmed Elmagarmid˛ Ihab F. Ilyas; Samuel Madden˚ Mourad Ouzzani˛ Michael Stonebraker˚ Nan Tang˛

˛Qatar Computing Research Institute, HBKU ˚MIT CSAIL :TU Berlin ;University of Waterloo
{emansour, aqahtan, aelmagarmid, mouzzani, ntang}@hbku.edu.qa

{dongdeng, raulcf, wenbo, madden, stonebraker}@csail.mit.edu abedjan@tu-berlin.de ilyas@uwaterloo.ca

Abstract—In order for an enterprise to gain insight into its
internal business and the changing outside environment, it is
essential to provide the relevant data for in-depth analysis.
Enterprise data is usually scattered across departments and
geographic regions, and is often inconsistent. Data scientists
spend the majority of their time finding, preparing, integrating,
and cleaning relevant data sets. Data Civilizer is an end-to-
end data preparation system. In this paper, we present the
complete system, focusing on our new workflow engine, a
superior system for entity matching and consolidation, and
new cleaning tools. Our workflow engine allows data scientists
to author, execute and retrofit data preparation pipelines of
different data discovery and cleaning services. Our end-to-end
demo scenario is based on data from the MIT data warehouse
and e-commerce data sets.

I. INTRODUCTION

Data analysts face several hurdles when applying their
analytics tools on their data. Challenges include discovering
data of interest, finding ways to combine the found data,
detecting errors (including duplicates), and fixing these
errors. Once they have a curated collection, they can proceed
with their analytics. Discovery, integration, and cleaning
clearly take a huge amount of time, up to 98% according
to some of our collaborators [1]. We have been working
for more than two years on building an end-to-end-system,
DATA CIVILIZER, to address these issues. We propose
to demonstrate the complete system showing its different
components and their interactions for a given integration
task, focusing on our new workflow engine that facilitates
the orchestration of various consolidation and cleaning tools
and on our novel golden record component.

DATA CIVILIZER contains three primary layers, namely
the CIVILIZER frontend, the CIVILIZER engine, and the
CIVILIZER services or modules. Figure 1 shows the ar-
chitecture. The workflow engine allows a user to string
together any of the CIVILIZER services in a directed graph
to accomplish her data integration goal. Then the engine
manages the execution of modules in the directed graph.
Users interact with the system via a new GUI we have
developed, called Civilizer Studio. In a nutshell, DATA
CIVILIZER has the following main services:

‚ A data discovery module, Aurum, to help find datasets
of interest. Aurum builds an enterprise knowledge

CIVILIZER ENGINE

STUDIO

AuthoringDC pipeline

Executor Monitor

TrackerAssistant

Rest APIs

CIVILIZER SERVICES
Aurum ImputeDBGolden Record PKDuck DeepERFahes

DATA
Data

 Sources

Execution
Logs

EKG

Figure 1. An overview of the DATA CIVILIZER system

graph (EKG) to connect similar tables together. Au-
rum allows a user to browse the graph, run similarity
searches on tables in the graph, and perform keyword
searches. Aurum can also help find all join paths that
connect these tables.

‚ An enrichment module, which will first union the
results of all the join paths. In fact, we create the outer
union of all the views, so we can keep all possible
attribute values, thereby generating a sparse table. This
module will then fill in some of the sparseness by
joining the result with other available tables.

‚ An entity resolution module to form clusters of records
thought to represent the same entity. We are currently
using DeepER [2], a deep learning-based entity resolu-
tion module. This can be easily replaced with another
module which can do the same job.

‚ A golden record module [3]. This component has the
effect of collapsing clusters representing the same entity
into single representative records. Our golden record
system excels at cleaning when there are multiple
sources of the same information.

‚ Other cleaning tools in the system include an abbrevi-
ation system [4], a disguised missing values detection
tool [5], and ImputeDB [6] for filling in missing values.

To better grasp the importance of DATA CIVILIZER, we
first discuss, in Section II, one of the scenarios that we will
show during the demo. Section III outlines the main features
of the workflow engine. We then highlight some details of
DATA CIVILIZER services in Section IV.



Figure 2. A sample DATA CIVILIZER workflow

II. PROPOSED DEMO SCENARIO

We describe our demo using the MIT Data Warehouse
(DWH), which consists of 2,400 tables. The DWH contains
typical university information, such as buildings, courses,
faculties, students, departments, and schools. There are mul-
tiple independent organizations contributing to DWH which
leads to duplicates, inconsistencies, and semantic violations.
In our demo, we use a subset of 167 publicly available tables.

Consider the following use case. The Stata Center is a
building on the MIT campus, which is mainly occupied by
the Computer Science and Artificial Intelligence Lab, as
well as a few other organizations, such as the Linguistics
Department. A facility administrator may want to know
the rooms in the Stata Center that are occupied by the
Linguistics Department and a list of people assigned to each
room. To accomplish this task, she can use DATA CIVILIZER
with the workflow shown in Figure 2, which is discussed
below.

1) DATA CIVILIZER allows data scientists to work across
multiple data sources. The DATA CIVILIZER source op-
erator creates a data access configuration file and iden-
tifies the corresponding EKG, or invokes the Aurum
indexing service, if there is no EKG for this data. The
source operator is for a data file, database table, or a
collection of data sources. The CollectionSource allows

a user to create a configuration file to fetch data from
different sources, i.e., databases. Therefore, she starts
the workflow by creating the CollectionSourceDWH
node to connect to and index, i.e., build an EKG, DWH.

2) Then she can execute Aurum and specify queries to
find tables containing room and department informa-
tion. There are two such tables in the MIT DWH.
FacilityRoom contains the space information and Sis-
Department contains a list of MIT departments.

3) Now she can call the join path discovery service to
find the tables that connect FacilityRoom and SisDe-
partment. In our demo, we find four connecting ta-
bles MITStudentDirectory, EmployeeDirectory, SePer-
son, and WarehouseUsers that link FacilityRoom and
SisDepartment. The schemas of these “middle” tables
are shown in Table I. This results in different possible
join paths.

4) Next, she can send all the tables found in the join path
to our data cleaning services, which generate updated
tables. We provide different cleaning tools that can be
used in parallel. The most useful cleaning tool here
is our abbreviation resolution system (PKDuck), which
can normalize entity names such as ‘CS’, ‘CompSci’,
and ‘Computer Science’. Our disguised missing values
system (Fahes) can also clean disguised missing values.
For example, the user may use DMVs with Ware-
houseUsers and MITStudentDirectory tables to clean
columns, such as OfficePhone and UnitName. Notice
that these cleaning steps may be done in parallel with
separate human checkers. This step ends by aggregating
the updated tables in a single data collection.

5) After that, the data enrichment service will union the
four join paths. The user needs to specify the columns
she is interested in with any filtering condition. For
example, she might want to restrict the output to the
Linguistics Department and rooms in the Stata Center.
This will produce a single table containing all the
needed information.

6) Th enrichment process is followed by entity matching
as each person may appear in multiple tables. For exam-
ple, an employee in the EmployeeDirectory table may
also be a data warehouse user in the WarehouseUsers
table. To remove duplicate information, this single table
must be sent to the entity matching service, which will
form possibly duplicate records into clusters.

7) Finally, the table of clusters is sent to our entity
consolidation service to produce for each cluster, a
single golden record corresponding to one person.

III. THE DATA CIVILIZER WORKFLOW ENGINE

Our workflow engine manages and monitors the data
integration and preparation pipeline, and allows data sci-
entists to work across multiple data sources. The workflow
engine simplifies pipeline authoring by providing APIs at



EmployeeDirectory: MITID FullName OfficeLocation OfficePhone DirectoryTitle DepartmentNumber DepartmentName KrbName EmailAddress
WarehouseUsers: MITID KrbName Name EmailAddress OfficeLocation OfficePhone UnitId UnitName Title Type
MITStudentDirectory: FullName OfficeLocation OfficePhone EmailAddress Department DepartmentName StudentYear
SePerson: MITID KrbName FullName PayrollRank PositionTitle IsActive OfficeLocation Organization EmployeeType

Table I
INTERMEDIARY TABLES USED IN THE DISCOVERED JOIN PATHS

the service level and uses a table-in-table-out interface with
the EKG as a global data structure for all DATA CIVILIZER
services.

The workflow supports pipeline authoring using a GUI,
called Civilizer Studio. The workflow functionality is ex-
posed via RESTful APIs. Data integration tasks are orga-
nized into projects. Projects can be created and dropped at
any time. Every workflow project is a directed acyclic graph
(DAG) of service invocations. Each directed edge from node
u to node v indicates that the node v will take the output
of u as its input. The user can instantiate a node using
different modules. For example, join path discovery could
be instantiated from the Aurum service or the ML4Join
service. This gives flexibility to the user to dynamically
utilize different services. Our workflow can run parts of a
pipeline in parallel to accelerate the process and make the
most of the available resources.

DATA CIVILIZER services need human-in-the-loop val-
idation. Naturally, these may take a long time to finish.
DATA CIVILIZER tracks and logs at two levels, (i) at the
module level, and (ii) at the workflow level for the overall
interaction. Any new module has to implement the DATA
CIVILIZER tracking and logging protocol. At the module
level, the workflow engine maintains a tracker, which logs
information for all the fine-grained operators used inside the
module. This allows nodes to be restarted after failures and
allows the effects of a module to be undone if desired.

The Civilizer Assistant can guide a user in constructing
a workflow that suits a certain analytical task. Specifically,
we propose to remember all past workflows, all past source
data, all past curated results, and any intermediate results
in a workflow pipeline that might be useful. This Curation
Database (CD) can be accessed by extensions of all of our
services to turn them into ”learn from history” services. For
example, our golden record service processes each cluster
of records and finds ”meta rules”. When applied, these rules
can alter values to reduce or eliminate ”non golden” values.
Remembering all rules that have been previously verified
will allow an ML system to automatically accept many of
these rules, resulting in a system with higher accuracy and
less human intervention.

IV. THE DATA CIVILIZER SERVICES

We briefly describe the different services of DATA CIV-
ILIZER which will be demonstrated. For some of these
services, more details can be found in their respective
publications.

A. Aurum

The MIT DWH administrators react to requests for infor-
mation from across the Institute. In effect, these are ad-hoc
queries to a 2400 table database. The DWH administrators
admit they spend considerably more time finding the in-
formation relevant to a user’s request than in writing the
SQL that responds to the request. Hence, they have a “data
discovery challenge”. Other companies we are working with
including Merck, British Telecom, and the City of New York
report the same discovery challenge.

We designed Aurum to build, maintain and query an
Enterprise Knowledge Graph (EKG). This graph contains
a node for each table and each column and edges that
maintain relationships between nodes. Building the EKG
requires accessing data sources repeatedly. To minimize
such accesses, we introduce a two-stage process consisting
of a profiler that summarizes all data from sources into
space-efficient signatures, and a graph builder, which finds
syntactic relationships, such as different similarities, and
PK/FK candidates in Opnq using only the signatures.

Aurum can discover join paths based on the constructed
EGK. We developed another method for join path discovery,
called ML4Join, based on machine learning techniques.
ML4Join extends the method proposed in [7] to detect
approximate PKFK edges. That allows ML4Join to avoid
the data heterogeneity.

Finally, Aurum contains a source retrieval query language
(SRQL) based on a set of discovery primitives that can
be composed arbitrarily, allowing users to express complex
discovery queries and allowing them to express different
ranking criteria for results. Links in the EKG are also
enriched using ontologies thus allowing the linking of tables
and columns that would otherwise not be connected. This
further helps users find datasets of interest.

B. Enrichment

Given two tables, Aurum can produce all the join paths
between them using information in the EKG. Then, the data
enrichment module materializes these join paths and unions
the results into a big, wide and presumably sparse table.
Because the materialized tables contain different attributes,
some parts of the union table are NULL. To fill in missing
values, enrichment uses the join path discovery service to
look for additional tables in the EKG that can join with the
result table using attributes in the result. From the set of
all possible join paths, enrichment chooses those that fill in
some of the null values without producing different values



for already populated cells. In the future, we plan to look
for more complex mechanisms to choose enrichment tables.

C. Golden Record Selection

Using an entity resolution tool, the records in the union ta-
ble are partitioned into clusters that represent the same entity.
The next step is to reduce each cluster to a “golden record”,
which contains the canonical values for each attribute, a.k.a
the entity consolidation problem. Truth discovery systems
are often used to solve this problem, usually employing
heuristics such as majority consensus (MC) or source au-
thority to determine the exemplar record. However, such
techniques are not capable of resolving simple data variation,
such as Jeff Ø Jeffery, and may give biased results.

To address the above issue, we implemented algorithms
to reduce clusters using automatically generated matchings.
These are substring pairs that can replace each other, e.g.,
9th Ø 9 and Jeff Ø Jeffery. To this end, we first align the
value pairs within a cluster by their longest common subse-
quences to generate candidate matchings. Then we aggregate
candidate matchings with common syntactic characteristics
(such as 9th Ø 9 and 15 Ø 15th) into groups, including their
syntactic structure and the program which describes how one
side of the matching is transformed to the other. Finally, we
solicit a human to validate these matching groups and apply
the approved ones to transform values. The net effect is to
lower the variability inside each cluster, allowing MC to do
a better job producing golden records. Note that MC could
be replaced by a more sophisticated truth discovery scheme
if desired. Refer to [3] for more details on the algorithm
and for experiments that show our enhanced MC scheme
outperforms vanilla MC on a variety of data sets by up to
80%.

D. Other Cleaning Tools

We developed three specialized data cleaning tools,
namely, PKDUCK [4] to deal with abbreviations, Fahes to
detect and fix disguised missing values, and ImputeDB [6]
to deal with missing values. These three data cleaning tools
can be invoked at any stage of the workflow to improve data
quality.

PKDUCK [4] is a join operator capable of finding similar
string pairs between two columns that contain a mix of
abbreviations and full values. For example, suppose a col-
umn contains dept of computer science and another column
contains department of cs. PKDUCK can identify that the
second value is an abbreviation of the first one and replaces
such abbreviations with full values. Our module uses a novel
similarity measure to quantify the similarity between two
strings, given an abbreviation dictionary learned from input
strings. This replacement is made as long as the similarity
is greater than a threshold. An efficient join algorithm using
the signature framework [8] makes PKDUCK scale to very
large datasets. PKDUCK can be applied as part of the

transformation function to help normalize values, or in the
data discovery module to identify links in the EKG.

Fahes [5] looks for erroneous values that replace the
missing values, which are known as disguised missing values
(DMVs). Fahes accurately detects the DMVs using the
following approach. We first use a data profiler to collect
statistics about the data. These statistics are consumed by
a detection engine which includes three main modules.
Syntactical outliers and repeated pattern discovery module
to detect data values with patterns that do not fit the
data. For example, a phone number attribute might contain
1111111111, 1212121212, 1234512345 or ?. An outlier
detection method is utilized to detect the DMVs that are out
of the range. For detecting DMVs that follow a missing-at-
random (MAR) model, an improved version of an existing
algorithm [9] is used.

ImputeDB [6] performs on-the-fly imputation of missing
values while processing a query. Traditional mechanisms
either impute the whole database which is expensive, or
drop all tuples containing missing values, which can possibly
introduce bias into the data and may discard an excessive
number of tuples. ImputeDB, on the other hand, frees
analysts from a base-table imputation step by adding two
types of operators into the query plan: Impute and Drop.
The Impute operation fills in missing values using any
statistical imputation technique. The Drop operation simply
drops tuples which contain missing values. A cost model is
used to measure the quality of the imputation operations. A
query planning algorithm is also designed to jointly optimize
for running time and result quality. See [6] for results on the
performance of ImputeDB.

REFERENCES

[1] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stone-
braker, A. K. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani,
and N. Tang, “The data civilizer system,” in CIDR, 2017.

[2] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani,
and N. Tang, “DeepER - Deep Entity Resolution,” CoRR,
vol. abs/1710.00597, 2017. [Online]. Available: http://arxiv.
org/abs/1710.00597

[3] D. Deng, W. Tao, Z. Abedjan, A. Elmagarmid, I. F. Ilyas,
S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang, “Entity
Consolidation: The Golden Record Problem,” ArXiv e-prints,
Oct. 2017.

[4] W. Tao, D. Deng, and M. Stonebraker, “Approximate string
joins with abbreviations,” PVLDB, vol. 11, no. 1, 2018.

[5] A. A. Qahtan, A. Elmagarmid, M. Ouzzani, and N. Tang,
“FAHES: Detecting disguised missing values,” in ICDE, 2018.

[6] J. Cambronero, J. K. Feser, M. J. Smith, and S. Madden,
“Query optimization for dynamic imputation,” PVLDB, vol. 10,
no. 11, pp. 1310–1321, 2017.

[7] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and
U. Leser, “A machine learning approach to foreign key dis-
covery,” in WebDB, 2009.

[8] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator
for similarity joins in data cleaning,” in ICDE, 2006, p. 5.

[9] M. Hua and J. Pei, “Cleaning disguised missing values: A
heuristic approach,” in KDD, 2007.


