
State-of-the-art in String Similarity Search and Join

Sebastian Wandelt
Knowledge Management in
Bioinformatics, HU Berlin,

Berlin, Germany

Dong Deng
Tsinghua University,

Beijing, China

Stefan Gerdjikov
FMI Sofia University,

Sofia, Bulgaria

Shashwat Mishra
Special Interest Group in

Data, IIT Kanpur,
Kanpur, India

Petar Mitankin
IICT Bulgarian Academy of

Sciences, FMI Sofia
University,

Sofia, Bulgaria

Manish Patil
Louisiana State University,

Louisiana, USA

Enrico Siragusa
Algorithmic Bioinformatics, FU

Berlin,
Berlin, Germany

Alexander Tiskin
Department of Computer

Science, University of
Warwick, United Kingdom

Wei Wang
University of New South

Wales,
New South Wales, Australia

Jiaying Wang
Northeastern University

Shenyang, China

Ulf Leser
Knowledge Management in
Bioinformatics, HU Berlin,

Berlin, Germany

ABSTRACT
String similarity search and its variants are fundamental
problems with many applications in areas such as data
integration, data quality, computational linguistics, or
bioinformatics. A plethora of methods have been de-
veloped over the last decades. Obtaining an overview of
the state-of-the-art in this field is difficult, as results are
published in various domains without much cross-talk,
papers use different data sets and often study subtle
variations of the core problems, and the sheer number
of proposed methods exceeds the capacity of a single
research group. In this paper, we report on the results
of the probably largest benchmark ever performed in
this field. To overcome the resource bottleneck, we or-
ganized the benchmark as an international competition,
a workshop at EDBT/ICDT 2013. Various teams from
different fields and from all over the world developed or
tuned programs for two crisply defined problems. All
algorithms were evaluated by an external group on two
machines. Altogether, we compared 14 different pro-
grams on two string matching problems (k-approximate
search and k-approximate join) using data sets of in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

creasing sizes and with different characteristics from two
different domains. We compare programs primarily by
wall clock time, but also provide results on memory us-
age, indexing time, batch query effects and scalability
in terms of CPU cores. Results were averaged over sev-
eral runs and confirmed on a second, different hardware
platform. A particularly interesting observation is that
disciplines can and should learn more from each other,
with the three best teams rooting in computational lin-
guistics, databases, and bioinformatics, respectively.

Keywords
String search, String join, Scalability, Comparison

1. INTRODUCTION
Approximate search and join operations over large col-
lections of strings are fundamental problems with many
applications. String similarity search is used, for in-
stance, to identify entities in natural language texts [29],
to align DNA sequences produced in modern DNA se-
quencing with substrings of a reference genome [16,17],
or to perform pattern matching in time series repre-
sented as sequences of symbols [10]. String similarity
joins are building blocks in the detection of duplicate
Web pages [13], in collaborative filtering [2], or in entity
reconciliation [7]. Research in this field dates back to
the early days of computer science and the area is still
highly active today. Literally hundreds of methods have
been proposed.

NGPP Ed-Join

Pass-Join Trie-Join

PartEnum All-Pairs

PPJoin

FastSS

M-Tree

LSHSSI Pearl

Figure 1: Recent work on string similarity search
and join with edit distance constraints. An edge
from method M1 to M2 visualizes that M2 was
found to be superior to M1. Marked approaches
are non-dominated, i.e. not reported strictly slower
than any other method.

For string similarity search and join, fundamental tech-
niques include seed-and-extend methods (turning sim-
ilarity search into an exact search problem of smaller
strings, e.g. All-Pairs [2], ED-Join [31], and PPJoin [32]),
partitioning techniques (e.g. Pass-Join [15], NGPP [29],
and PartEnum [1]), prefix-filtering methods (e.g. Trie-
Join [8] and PEARL [23]), and other methods (e.g. M-
Tree [5], LSH [12], SSI [9], and FASTSS [25]).
Research in the field has been carried out in various
scientific disciplines, the most important ones proba-
bly being algorithms for pattern matching, computa-
tional linguistics, bioinformatics, and database / data
integration. There are subtle differences between the
problems being studied, for instance varying in the con-
crete similarity measure (edit distance, Jaccard, Ham-
ming etc.), the type of string comparisons (global or
local alignment, approximate substring search etc.), the
amount of indexing being allowed (online in the queries
and/or the database). Methods often are tuned for spe-
cific ranges of allowed error thresholds or query lengths,
specific hardware properties, specific alphabet sizes, or
specific distributions of errors. Though newly published
methods mostly compare to some prior works, selection
of these works is often suboptimal and comparisons are
carried out on different data sets; data sets all too often
are not made publicly available, which means that re-
sults are not reproducible. In Figure 1, we show existing
evaluation results for the most relevant work on string
similarity search/join with edit distance constraints. As
a consequence of the heterogeneity of approaches and
problems, the lack of common benchmarks, and the dis-
persal of research in different communities, today it is
hardly possible to choose the best algorithm for a given
problem.
In this work, we report on the (to the best of our knowl-
edge) most comprehensive benchmark in two specific
string similarity match problems to date: k-approximate
search and k-approximate join (with k as an edit dis-
tance threshold; see below for exact definition). We
organized this benchmark using a rather uncommon ap-
proach: The International competition on Scalable String
Similarity Search and Join (S4)1 held as a workshop
in conjunction with EDBT/ICDT 2013. We made an
open, world-wide call for contributions and provided

1http://www2.informatik.hu-berlin.de/~wandelt/
searchjoincompetition2013/

crisp task definitions, a loose hardware specification and
example data. Nine teams from different communities
participated, including databases, natural language pro-
cessing, and bioinformatics. Thus, for the first time, we
were able to evaluate different highly competitive imple-
mentations of search and join algorithms on the same
evaluation platform (hardware, operating system, and
datasets). In addition, organizing the benchmark as a
competition, where teams developed and tuned their
own programs independently, allowed us to compare
original and optimized programs instead of unverified
and potentially unoptimized re-implementations.
All submitted programs were tested on different datasets
(DNA sequences and geographical names) of different
sizes (a few KB up to a few GB) with different error
thresholds (edit distance k between 0 and 16). We per-
formed experiments in two different hardware settings:
a commodity PC with 8 cores/64 GB RAM and a server
with 80 cores/1 TB RAM. For the top performing pro-
grams we performed additional analyses with different
number of threads to investigate the possibility to par-
allelize algorithms. Furthermore, we compared submis-
sions with a number of publicly available algorithms of
groups that did not participate, showing that the best
ranked programs from our competition are several or-
ders of magnitude faster. Altogether, 14 different pro-
grams or configurations were evaluated with differences
in runtime of factors of more than 1000 between the
fastest and slowest program. We are confident that our
results give a fairly representative picture of the state-
of-the-art in string similarity search. The evaluation of
all programs and datasets took more than three months
of raw processing time.
The wealth of experiments we performed and the sig-
nificant number of programs we compared allows us to
draw several interesting conclusions about scalability,
batch procession effects, index size, main memory us-
age, and the possibility to parallelize techniques.
The purpose of this paper is not only to report on ef-
ficiency of algorithms in string similarity search, but
also to promote competitions as an effective, joyful, and
comprehensive means to evaluate the state-of-the-art on
a given problem. Actually, competitions are quite com-
mon in many related disciplines, such as information ex-
traction, information retrieval, data analysis etc., but,
to our knowledge, represent a novel approach within the
database community. The only comparable effort we are
aware of is the SIGMOD programming contest. How-
ever, it only addresses graduates and the focus is more
on education (and probably recruitment). In contrast,
the main purpose of S4 was to identify the fastest meth-
ods available. Clearly, the most critical point for a com-
petition like S4 is the measurement of wall clock time,
which is dependent on the concrete implementation and
the machine being used for measurements, instead of
quality metrics independent of the concrete implemen-
tation and evaluation environment (such as precision or
recall). We will expand on this issue in Section 6.
The remainder of this paper is organized as follows. We
describe the concrete problems we benchmarked, the
datasets, and the benchmarking methodology in Sec-

tion 2. All submitted methods are briefly presented in
Section 3. Evaluation results for approximate string
searching are presented in Section 4 and for approxi-
mate string join in Section 5. In Section 6, we discuss
the results of the competition and compare results to
three external programs, Flamingo [3], Pearl [23], and
SSI [9], which were evaluated after our competition was
finished. The paper is concluded with Section 7.

2. BACKGROUND
We define the problems of approximate string search-
ing and approximate string join. Our competition and
evaluation methodology is introduced together with a
description of datasets and evaluation environments.

2.1 Formal problem statement
Definition 1 (Strings). A string s is a finite se-

quence of symbols over an alphabet Σ. The length of a
string s is denoted by |s| and the substring starting at
position i with length n is denoted by s(i, n). We write
s(i) as an abbreviation for s(i, 1). All positions in a
sequence are zero-based, i.e., the first character of s is
s(0).
As a distance function between two strings we use un-
weighted edit distance for different error thresholds k.

Definition 2 (String similarity). Given strings
s and t, s is k-approximately similar to t, denoted s ∼k

t, if and only if s can be transformed into t by at most k
edit operations. The edit operations are: replacing one
symbol in s, deleting one symbol from s, and inserting
one symbol into s.
We investigate two problems: string similarity search
and string similarity join.

Definition 3 (Similarity search). Given a col-
lection of strings S = {s1, ..., sn}, a query string q, and
an edit distance threshold k, the result of string similar-
ity search of q in S is defined as
SEARCH(S, q, k) = {i | si ∈ S ∧ si ∼k q}.
For instance, given a collection S = {ACA, TGA,AC},
a query string q = ACA, and k = 1, the result of string
similarity search is SEARCH(S, q, k) = {1, 3}.

Definition 4 (Similarity (self) join). Given a
collection of strings S = {s1, ..., sn} and an edit distance
threshold k, the result of string similarity self-join of S is
defined as JOIN(S, k) = {(i, j) | si ∈ S∧sj ∈ S∧si ∼k

sj}.
For instance, the result of a string similarity self-join
on data set S from above with k = 1 is JOIN(S, 1) =
{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}. Note that we explic-
itly include the reflexive and symmetric closure in our
definition. We note that a self-join is comparable to a
join between two different sets as we make no assump-
tions about the a priori average level of similarity of the
strings in a set. In the following we will often use the
term join instead of self-join.

2.2 Competition and methodology
This competition brought together researchers and prac-
titioners from database research, natural language pro-
cessing, and bioinformatics. The challenge for all par-
ticipants was to perform string similarity search and

1. Initial call for contributions (June 2012)

2. Letter of intent (November 15th, 2012)

3. Publication of test data (November 16th, 2012)

4. Tuning phase (November 16th, 2012 - January 20th, 2013)

5. Final submission of executables (January 20th, 2013)

6. Evaluation (January 2013 - March 2013)

7. Workshop (March 22nd, 2013)

8. Post-workshop analysis (March 2013 - July 2013)

Figure 2: Phases of the competition

join over unseen data and query sets with varying er-
ror thresholds k as fast as possible. The call for the
competition was circulated by email through various
lists addressing the different areas dealing with string
matching, in particular databases, algorithms, compu-
tational linguistics, and bioinformatics. We also con-
tacted directly a few dozen researchers known for their
contributions to the field. The different phases of the
competition are shown in Figure 2.
In total we received initial expressions of interest from
22 teams, out of which 11 teams officially submitted
a program. One team failed to hand in a complete
paper describing their approach on time, and another
group withdrew shortly before the final deadline. Thus,
we eventually compared programs from 9 teams (see
Table 1). All these teams gathered at a workshop co-
locates with EDBT/ICDT 2014 in Genoa, where each
team presented its approach and the results of our eval-
uation were discussed. This format led to a workshop
in the best sense of the word - as all presentations es-
sentially covered the same problems, talks were highly
focused and intensive discussions and exchanges of ideas
emerged naturally. We also organized culinary prices for
the best teams which were immediately shared with the
entire audience.
We succeeded in reaching out to different research com-
munities: two teams have their home in bioinformat-
ics, two in computational linguistics, one in algorithms/
computational complexity, and the remaining four are
best described as database groups. Contributions came
from four continents and seven countries. At least six
teams (Team 1, 3–5, 7–9) published highly influential
papers on string matching problems before [15, 19, 22,
24, 26, 28, 33], while two teams (Team 2 and Team 6)
can be considered as newcomers. As Table 1 shows, the
techniques used cover a broad range and thus subsume
a large fraction of previous research in k-approximate
string matching. In addition, out of the five non-dominated
methods in Figure 1, four methods are directly repre-
sented by corresponding authors in our competition.
The competition consisted of two tracks:
Track 1: Given a set of strings S, a query string q and

an error threshold k, compute SEARCH(S, q, k).
Track 2: Given a set of strings S and an error threshold

k, compute JOIN(S, k).
Small subsets of the final evaluation datasets (around
5%) were made available for the contestants for prepa-
ration of their submissions. It was announced that these

Team Affiliation General approach Indexing? Indexing queries?
1 Tsinghua University, China Partitioning and pruning [15](Pass-

Join, Trie-Join)
yes no

2 Magdeburg University, Germany Sequential search no no
3 University of Warwick, UK Bit-parallel LCS computation [26] no yes
4 Sofia University, Bulgaria Directed acyclic word graph [19] yes no
5 FU Berlin, Germany Approximate partitioning [24] yes/no yes/no
6 IIT Kanpur, India Deletion neighborhoods / hashing yes no
7 Louisiana State University, USA Q-gram indexing with filtering yes no
8 University of NSW, Australia Trie-index with filtering [33]

(PPJoin,NGPP)
yes no

9 Northeastern University, China cache-aware BWT yes no

Table 1: Teams which participated in the competition

Dataset |dataset| |queries|

TINY 15,000 100

SMALL 150,000 1,000

MEDIUM 1,500,000 10,000

LARGE 5,000,000 20,000

HUGE 15,000,000 100,000

"Max" 20,000,000 200,000

Dataset |dataset| |queries|

TINY 10,000 1,000

SMALL 50,000 5,000

MEDIUM 100,000 10,000

LARGE 500,000 50,000

HUGE 1,000,000 100,000

"Max" 2,000,000 200,000

Reads

Geonames

15,000

150,000

1,500,000
5,000,000

15,000,000

100

1,000

10,000
20,000

100,000

10
100

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

TINY SMALL MEDIUM LARGE HUGE

READS

|dataset| |queries|

10,000

50,000
100,000

500,000
1,000,000

1,000

5,000
10,000

50,000
100,000

100

1,000

10,000

100,000

1,000,000

TINY SMALL MEDIUM LARGE HUGE

CITIES

|dataset| |queries|

Figure 3: Size of dataset and number of queries used for evaluation (READS and CITIES)

strings are representative for the whole evaluation datasets.
Furthermore, we announced a description of the evalu-
ation hardware and provided a virtual machine mirror-
ing the software environment used for evaluation. Thus,
all teams could develop and tune their programs before
submission. Each program was allowed to use any num-
ber of threads, with the restriction that the official eval-
uation environment System 1 (see below) has 8 cores,
and a maximum of 48 GB of main memory. Details on
CPU, clock rate, cache sizes, disks etc. were not pro-
vided to prevent hardware specific tuning; note that this
implies that further improvements could be possible tak-
ing the specific hardware into account [20]. Programs
were allowed to have two phases, one for indexing the
data set, and one for evaluating a set of queries on the
set (or the index). The main evaluation criterion was
measured wall clock time. In general, we ranked pro-
grams based on average runtime over three independent
runs; variations in runtime were very low and are not re-
ported here. If programs ran much longer than most of
the competitors, experiments were only performed once.
We also measured the indexing time and report it here,
but we did not take it into account for ranking.

2.3 Datasets
We used two different types of datasets, for evaluation
in both tracks, to cover different alphabets and string
lengths. Each type of dataset contains five distinct,
highly-similar datasets of increasing size, for evaluating
scalability.
READS: These data sets contain reads obtained from

a human genome. The data is characterized by
a small alphabet (5 symbols) and quite uniform

length of strings (around 100 symbols per string).
CITIES: These data sets are based on geographical

names taken from World Gazetteer. The data
is characterized by a larger alphabet (around 200
symbols) and non-uniform length of strings (5-64).

Considered values for k depend on the dataset. For
READS, we announced and used k ∈ {0, 4, 8, 12, 16};
for CITIES k ∈ {0, 1, 2, 3, 4}. Thus the maximum error
rate for READS is around 1

6
and for CITIES around

4
5
. The size of each dataset and the number of queries

for Track 1 are shown in Figure 3. For READS, the
number of reads starts with 15,000 (TINY) and ends
with 15,000,000 (HUGE). For CITIES, the number of
cities starts with 10,000 (TINY) and ends with 1,000,000
(HUGE). For READS and CITIES, the maximum num-
ber of queries in HUGE is 100,000.

2.4 Evaluation Environments
After the development phase of the competition, partic-
ipants submitted their final programs which were eval-
uated on two different platforms.
System 1: A computer with 8 cores (processor: AMD

FX-8320) and 64 GB RAM. The operating system
(Fedora Scientific 17 x86 64) was installed on a
SSD with 128 GB. The SSD contained the datasets
as well as the programs. Each program serialized
its results to an external USB 3.0 hard disk with 3
TB. This system was announced beforehand and
results for this system were used for ranking.

System 2: A server with 80 cores (processors: Intel
Xeon CPU E7 - 4870) and 1 TB RAM. The op-
erating system was openSUSE 12.1 x86 64. All
datasets, programs, and serialized results were put

on a local hard disk with a total storage capac-
ity of 10 TB. This system was introduced only
during evaluation for (a) performing experiments
with more cores / memories and for (b) confirm-
ing results on a separate hardware with different
architecture and CPUs.

Most of the experiments were run on System 1. We have
used System 2 only for an extended evaluation, inves-
tigating the scalability with the number of threads (for
top performing methods on System 1). In our evalua-
tion below, we will mention explicitly if System 2 was
used.

3. METHODS
This section describes the methods used by each team
in their submissions to the competition.

3.1 Team 1
PassJoin (Tsinghua University) adopts a partition-based
framework for string similarity search and joins. The ba-
sic idea is that given two datasets R and S, and an edit
distance threshold k, each string in R is split into k+ 1
disjoint segments. For each string in S, PassJoin checks
if it contains any substring matching the segments of R.
If no, PassJoin prunes the string; otherwise the string
and those strings whose segments match the substrings
of the string are verified. There are two challenges in
the partition-based method. The first one is how to
select the substrings. A position-aware substring selec-
tion method and a multi-match-aware substring selec-
tion method have been proposed. It has been proven the
multi-match-aware substring selection method selects
the minimum number of substrings. And it is the only
way to select the minimum number of substrings when
the string length is longer than 2 ∗ k + 1. The second
one is how to verify each candidate pair. PassJoin uses
a length-based verification method, an improved early
termination technique, and an extension-based verifica-
tion method.
Team 1 submitted two programs: Program 1 A and
Program 1 B. Both programs of Team 1 were evalu-
ated for both tracks and both datasets.

3.2 Team 2
Team 2 (Magdeburg University) tries to outperform con-
ventional index-searches by a sequential search algo-
rithm. Starting from a naive algorithm for comput-
ing edit distances, several optimizations are introduced.
Calculation of the edit distance is improved by using
length-heuristics. If the computation of a dot matrix
cannot be avoided, the program applies several heuris-
tics to prune the search space early. Further optimiza-
tions include the use of reference-based semantics over
value-based semantics and the use of simple data types.
They devise simple scheduling strategies depending on
the current workload.
Team 2 submitted only one program: Program 2 A,
which was evaluated for Track 1 only.

3.3 Team 3
The Waterfall algorithm of Team 3 (University of War-
wick) solves the competition challenge without index-
ing or any other preprocessing of the database strings.
First, a reduction of the edit distance problem to the
longest common subsequence (LCS) problem between
the database string and the query string, both suit-
ably modified, is applied. The strings’ LCS score is
then computed by a bit-parallel algorithm, based on [6].
This technique is extended so that a database string can
be tested simultaneously against multiple query strings,
by a subword-parallel technique similar to that of [14],
which was further developed in the waterfall algorithm.
Due to the self-imposed restriction of not preprocess-
ing the database, the algorithm runs significantly slower
than other competitors, which do index the database
strings before answering the queries. However, the ap-
proach chosen by Team 3 can prove useful in a situation
where input preprocessing is not possible. Such a sit-
uation occurs e.g. when the string database is replaced
by a continuous stream of input strings, each of which
needs to be matched against a small set of query strings
in real time.
Team 3 submitted only one program: Program 3 A,
which was evaluated for both tracks and both datasets.

3.4 Team 4
The WallBreaker of Team 4 (Sofia University) is a new
sequential algorithm for the similarity search problem
in a finite set of words. It reduces and essentially over-
comes the wall-effect caused by the redundantly gener-
ated false candidates. To achieve this the query is split
into smaller subqueries with smaller threshold. This al-
lows to start with an exact match and then extend these
exact matches to longer candidates whereas the thresh-
old increases slowly in a stepwise manner. In order to
implement this idea in practice two kind of resources are
used: (i) a linear space representation of the infixes in
the finite set of words that enables a left/right extension
of an infix in constant time per character; and (ii) effi-
cient filters, universal Levenshtein automata [18], sych-
norised Levenshtein automata [19] and standard Ukko-
nen filter [27], that prune the unsuccessful candidates
as soon as a clear evidence for this occurs. In the in-
dex structure information about the possible lengths of
longest/shortest left/right possible extensions are en-
coded. This information is then used as an additional
length-filter.
As a result a breaking-the-wall-effect is achieved. In the
beginning the WallBreaker considers only small neigh-
borhoods of short words which keeps the searching space
modest. Afterwards, while increasing the potential size
of the neighborhoods, longer infixes are generated that
are much more informative than shorter ones and sup-
press the searching space for their own sake. For further
details the reader is refered to [11], where besides the
standard Levenshtein edit-distance also the generalized
Levenshtein edit-distance is handled.
Team 4 submitted two programs:
Program 4 A: It uses 16 threads, the additional length-
filter, and applies universal Levenshtein automata for

thresholds ≤ 5, and synchronised Levenshtein automata
for thresholds ≤ 3.
Program 4 B: It uses 16 threads, ignores the addi-
tional length-filter, and applies universal Levenshtein
automata for thresholds ≤ 5, and synchronised Leven-
shtein automata for thresholds ≤ 3.
Both programs of Team 4 were evaluated for both tracks
and both datasets.

3.5 Team 5
The methods of Team 5 (FU Berlin) are variations of
those applied in Masai [24], a tool for mapping high-
throughput DNA sequencing data. First an online so-
lution for computing edit distances using a banded ver-
sion of the Myers bit-vector algorithm [21] is proposed.

Team 5 is able to check in time O
((k+1)(n+|Σ|)

w

)
, where

w is the CPU word size and Σ the string alphabet, if
two strings of length m and n (w.l.o.g. m < n) are
within edit distance k. Then they propose to index
multiple queries in a radix tree and backtrack them into
the radix (or suffix) tree of the database. In practice,
radix (and suffix) trees are replaced by simpler radix
(and suffix) arrays. Multiple backtracking is parallelized
with static load balancing and work queues. Finally,
as proposed by Navarro and Baeza-Yates [21], a filter-
ing method partitioning queries into approximate seeds
is implemented. Such a filtering method combines the
previous two methods and works well up to moderate
error rates. The programs are implemented in C++ and
OpenMP using the SeqAn library.
Team 5 submitted four programs:
Program 5 A: An online algorithm.
Program 5 B: Partitioning with minimum seed length
(10 for READS, 4 for CITIES)
Program 5 C: Partitioning with minimum seed length
(13 for READS, 5 for CITIES)
Program 5 D: Partitioning with minimum seed length
(15 for READS, 6 for CITIES)

3.6 Team 6
The submission of Team 6 (IIT Kanpur) uses deletion
neighborhoods [25]. A k-neighborhood is generated for
every string s ∈ S. Every string in the k-neighborhood
is referred to as a key. The underlying index structure
is a hash-table which maintains an inverted index on
the keys. In order to circumvent the large space re-
quirement, the program only indexes an Ls-length suf-
fix for each key. Given a query string q and an edit
distance threshold k, first the k-neighborhood of q, Nq,
is generated. The list corresponding to every key in
Nq is obtained from the index structure. A union of
these lists is guaranteed to be a superset of the answer
set SEARCH(S, q, k). For each string s in the gener-
ated candidate list, the program uses a length-threshold
aware distance computation to verify s. In a multi-core
environment, the program partitions the entire work-
load into k equal parts and each part is handled by a
single, dedicated thread. Team 6’s idea is that dele-
tion neighborhoods offer a powerful, selective signature
scheme to process edit distance queries. Team 6 only
participated in Track 1 of the competition. Further,

since deletion neighborhoods are only suited for scenar-
ios with larger alphabet size, Team 6’s submission Pro-
gram 6 A was only evaluated on CITIES dataset.

3.7 Team 7
The index structure of Team 7 (Louisiana State Uni-
versity) consists of a generalized suffix tree (GST) and
a two-level wavelet tree (WT) on its leaves. The first
level WT maintains an array of starting positions of all
suffixes of GST. For each leaf of this WT, another WT
for the difference between the starting position of the
suffix and the string length to which it belongs to is
maintained. Given τ , r, Team 7 obtains τ + k disjoint
partitions of r aiming to balance selectivity of count
filtering and frequency of partitioned segments. Then
GST and WT are used to obtain inverted list of each
partition pre-filtered by“Position Restricted Alignment”
that combines the well-know length and position filters.
All inverted lists are then merged to retrieve the strings
similar to r.
Team 7 submitted only one program: Program 7 A,
which was evaluated for Track 1 with READS only.

3.8 Team 8
Team 8 (University of NSW) presents a solution based
on tries, which have the advantages of small indexing
space, freeness of verification, and computation sharing
among strings with common prefixes. The method pro-
posed is a simple adaptation of trie-based error-tolerant
prefix matching [30]. Existing trie-based methods pro-
cess a query by incrementally traversing the trie and
maintaining a set of trie nodes (called active nodes) for
each prefix of the query. One common drawback is that
they have to maintain a large number of active nodes.
Instead, Team 8 records only a small number of po-
tentially feasible nodes as ”active nodes” during query
processing, which reduces the overhead of maintaining
nodes and reporting results. In addition, Team 8 char-
acterizes the essence of edit distance computation by
a novel data structure named edit vector automaton,
which substantially accelerates the state transition of
active nodes, and therefore, improves the total query
performance. Naive parallelization is added to exploit
multi-core CPUs.
Team 8 submitted only one program: Program 8 A,
which was evaluated for Track 1 with CITIES only.

3.9 Team 9
BWTSearcher of Team 9 (Northeastern University) takes
advantage of a cache-aware multicore framework using
Burrows-Wheeler-Transform [4]. BWTSearcher segments
the whole collection of database sequences to fit to the
CPU cache lines. The approximate string search algo-
rithm is based on a partition approach. The query is
decomposed into τ + 1 chunks. If P matches the text
with at most τ errors, at least one of the parts will match
a substring of the text exactly. A new data structure
called BWTPA is proposed to find the matching can-
didates. Length filter and position filter are used to
prune the candidates. Team 9 proposed a reversed seg-
ment trie to merge the identical segments, which can
save much duplicated computation. In addition, a look

ahead algorithm is developed to support bounded edit
distance and improve the verification of the candidate
strings. BWTSearcher can search on any dataset, but
is not optimized on DNA data, yet.
Team 9 has only one participating program: Program
9 A, which was evaluated on all datasets for Track 1.

4. EVALUATING APPROXIMATE STRING
SEARCH METHODS

In the following section we report results for all sub-
missions for Track 1: approximate string search. We
present results for READS datasets first and then for
CITIES.

4.1 Similarity Search for READS
In Figure 4, we show the indexing and search times
for the READS dataset and random values for k (for
each query in the dataset we have assigned a random
number out of {0, 4, 8, 12, 16}). For READS-TINY and
READS-SMALL most of the programs compute the re-
sults within a few seconds, with two exceptions. 2 A,
the index-less approach, needs already 185 seconds for
answering READS-SMALL. For READS-MEDIUM, 2 A
did not compute a result within several hours, so it was
not evaluated on the larger datasets. Program 5 A, an-
other index-less approach, needs 23.9 seconds for READS-
SMALL and around 45 minutes for READS-MEDIUM.
Therefore, 5 A was not tested on READS-LARGE and
READS-HUGE.
The fastest programs for READS-HUGE are 4 A and
4 B, taking 232.5 and 249.0 seconds, respectively. The
third program is 1 A, which needs 312.1 seconds. How-
ever, the indexing time of 1 A is around 20 times shorter
than the indexing time for 4 A and 4 B. Programs 1 B,
5 B, 5 C, and 5 D need 10 to 15 minutes for READS-
HUGE. Program 3 A, which does not use an index struc-
ture, already needs 8 hours to compute all solutions for
READS-HUGE.
In Figure 16, we show search times for different values
of k and the dataset READS-MEDIUM. The indexing
time for all the programs is independent of the value of
k, and is shown in Figure 4. Except 3 A and 9 A, all
programs can compute the results set for k ≤ 8 within
few seconds. The best program for k = 16 is 4 A, need-
ing only 17.8 seconds, followed by 4 B and 1 A. For all
values of k, 4 A is among the fastest programs, only
clearly outperformed by 1 A for k = 12.
We have further analyzed the effect of batch-processing
for all programs for READS-MEDIUM and k = 4, ex-
cept 2 A. In Figure 15, the average time per query for
different numbers of queries is shown. It can be seen
that for most programs, the average query answering
time per query is reduced, if the number of queries is
increased. For a large number of queries, the programs
of Team 1 and Team 4 have the shortest time per query.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2
with a different number of threads. Each program was
preset to use 8, 24, and 80 threads, respectively. In Fig-
ure 5, the results of the evaluation are shown. It can be
seen that 1 A and 4 A scale quite well with the number

Prog. I S I S I S I S I S

1_A 0.4 0.2 1.1 0.4 10.3 4.3 34.0 24.5 108.0 312.1

1_B 0.4 0.2 1.2 0.4 10.5 9.5 33.6 64.9 100.9 924.7

2_A 0.1 2.4 1.3 185.7 - - - - - -

3_A 0.0 1.5 0.0 4.5 0.3 289.8 0.7 1,979.8 2.0 30,898.0

4_A 2.5 0.5 29.3 0.2 291.0 4.6 872.5 24.6 2,251.8 232.5

4_B 1.7 0.3 23.0 0.5 235.2 5.4 710.3 27.8 1,754.5 249.0

5_A 0.0 0.5 0.1 23.9 0.9 2,802.1 - - - -

5_B 1.4 0.1 2.4 0.7 15.8 8.7 55.4 51.6 192.2 580.8

5_C 1.4 0.1 2.4 1.7 15.7 31.4 55.3 95.8 193.9 761.2

5_D 1.4 0.1 2.3 2.7 15.5 52.5 55.7 138.9 193.7 900.3

7_A 0.5 0.5 1.1 0.4 168.4 13.2 567.8 62.9 2,710.9 1,587.8

9_A 0.3 0.2 2.4 9.2 26.5 532.5 85.6 3,269.4 465.6 42,866.6

TINY SMALL MEDIUM LARGE HUGE

Figure 4: Indexing (I) and search (S) times for dif-
ferent READS datasets (Track 1, k varies per query)
[time in seconds].

READS- Prog. I S I S I S

1_A 16.6 4.1 15.8 1.8 14.6 1.2

4_A 510.6 4.9 527.2 2.0 639.4 1.5

5_B 25.0 14.7 24.9 17.4 18.1 16.6

1_A 47.4 26.3 48.3 10.9 47.8 7.0

4_A 1,851.3 27.0 1,518.6 12.8 1,740.8 8.1

5_B 93.7 80.0 66.1 81.8 66.0 91.2

1_A 131.8 371.7 134.9 137.7 131.1 82.1

4_A 4,290.4 245.3 3,718.7 87.2 4,096.2 42.8

5_B 301.2 1,237.5 240.3 1,186.4 2,172.2 1,403.7

LARGE

HUGE

8 threads 24 threads 80 threads

MEDIUM

Figure 5: Search times for READS on System 2
[time in seconds].

Prog. I S I S I S I S I S

1_A 0.1 0.5 0.1 0.4 0.2 0.9 0.9 18.2 1.9 59.9

1_B 0.1 0.4 0.1 0.4 0.2 0.9 0.9 17.7 1.7 46.8

2_A 0.0 0.5 0.0 4.0 0.1 23.6 0.2 228.3 - -

3_A 0.0 1.5 0.0 3.0 0.0 6.1 0.1 41.2 0.2 109.6

4_A 2.3 0.2 3.9 0.7 7.0 1.6 25.0 28.5 39.7 69.2

4_B 1.1 0.5 3.9 0.7 7.0 1.6 24.5 28.4 39.9 67.3

5_A 0.0 2.0 0.0 39.0 0.0 176.5 0.1 3,623.9 - -

5_B 2.4 1.1 2.4 14.6 2.5 53.8 2.7 1,018.9 3.1 4,903.0

5_C 2.4 1.1 2.4 13.6 2.4 44.7 2.7 1,088.8 3.2 4,387.4

5_D 2.4 1.6 2.4 14.6 2.5 43.2 2.7 1,062.3 3.1 3,097.0

6_A 13.0 0.5 63.2 1.3 126.3 2.8 562.4 16.0 1,206.3 248.3

8_A 0.0 0.5 0.1 1.4 0.2 5.4 1.0 107.9 2.0 445.5

9_A 0.1 0.5 0.1 0.9 0.2 2.5 1.1 15.2 1.6 137.5

TINY SMALL MEDIUM LARGE HUGE

Figure 6: Indexing (I) and search (S) times for dif-
ferent CITIES datasets [time in seconds].

of threads: if the number of threads is increased by 3
(8 to 24), the search time is reduced by a factor larger
than 2. The improvement from 24 threads to 80 threads
is not as big any more. For 5 B there is almost no effect
when increasing the number of threads. Their multiple
backtracking algorithm is not straightforward to par-
allelize and the static load-balancing approach doesn’t
scale well. In this scenario it is probably easier to aban-
don multiple backtracking and go back to ”standard”
single backtracking, to allow a query-by-query paral-
lelization.

4.2 Similarity Search for CITIES
In Figure 6, we show the indexing and search times
for the CITIES dataset and random values for k. For

CITIES- Progr. I S I S I S

1_A 0.21 0.57 0.22 0.24 0.27 0.19

4_A 10.25 0.95 10.26 0.38 10.31 0.23

5_B 0.77 158.15 1.20 133.68 1.36 103.95

1_A 1.123 12.84 1.042 5.341 1.143 3.222

4_A 33.283 17.68 33.353 7.297 33.686 4.377

1_A 2.225 43.615 2.226 19.679 2.247 11.529

4_A 52.903 57.473 53.53 28.283 53.175 21.057
HUGE

LARGE

8 threads 24 threads 80 threads

MEDIUM

Figure 7: Search times for CITIES on System 2
[time in seconds].

CITIES-TINY and CITIES-SMALL most of the pro-
grams compute the results within a few seconds. The
only exception are the programs of Team 5, which need
already 13.6 -39.0 seconds for CITIES-SMALL. All pro-
grams were tested on all datasets, with two exceptions.
Programs 2 A and 5 A did not return a result for CITIES-
HUGE within several hours. Indexing times are quite
short for all programs, except 6 A, which almost spends
20 minutes on indexing CITIES-HUGE.
The fastest program for CITIES-HUGE is 1 B, need-
ing 46.8 seconds. It is closely followed by 1 A, 4 A,
and 4 B. The programs of Team 5 are the slowest for
CITIES, which probably means that their approach is
better suited to deal with small-alphabets.
In Figure 17, the search times for CITIES-MEDIUM
and different values of k are shown. Programs 1 A and
1 B are always among the fastest.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2
with a different number of threads. In Figure 7, the re-
sults are shown. The results are very similar to the re-
sults of READS: Program 1 A and 4 A scale well from
8 to 24 threads and quite good for 24 threads to 80
threads. Program 5 B does not scale as well as the
other two (and was not tested for CITIES-LARGE and
CITIES-HUGE).
Figure 8 shows a comparison of indexing times vs. search
times for READS-HUGE and CITIES-HUGE for Sys-
tem 1.

5. EVALUATING APPROXIMATE STRING
JOIN METHODS

In the following section we report on results of all sub-
missions for Track 2: approximate string join. Again,
we present results for READS datasets first and then
for CITIES.

5.1 Similarity Join for READS
In Figure 18 and Figure 20, we show the join times for
the READS dataset, for k = 0 (a) and k = 16 (b),
respectively.
For k = 0, all programs have been tested for all datasets,
except from 5 A. Program 5 A already needs around
30 minutes to perform a join on READS-SMALL. The
fastest programs need less than 10 seconds to perform
a self-join on READS-HUGE: 1 A and 1 B. For k=16,
most programs could only be tested until READS-SMALL.
Two programs were evaluated in READS-HUGE: Pro-
gram 1 A needed 22.9 hours and Program 4 A needed

41.5 hours.
We report the join times for READS-HUGE and dif-
ferent values for k in Figure 9. Programs 3 A and
9 A already need more than 20 hours to perform a 4-
approximate self-join on READ-HUGE. The best per-
forming method is implemented in Program 1 A.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment System 2
with a different number of threads. In Figure 21, the
results are shown. For all programs a higher number
of threads reduces the runtime. It is interesting to see
that with an increasing value of k, the effect is bigger
than with small numbers. We conjecture that the over-
head of setting up the threads and synchronization is
dominating for smaller k.

5.2 Similarity Join for CITIES
Join times for the CITIES dataset are reported in Fig-
ure 22 for k = 0 and in Figure 19 for k = 4. Apart
from Program 5 A, all programs finished to compute an
exact self-join on all CITIES datasets. Program 1 A is
the fastest program in each case. Team 4’s programs
are ranked second. Program 3 A finishes third, which
is quite remarkable for an index-less approach.
The join times for CITIES-HUGE and different values of
k are reported in Figure 10. Program 1 A is the best for
all values of k, except for k = 1, where it is outperformed
slightly by 1 B. We did not test the index-less approach
5 A.
We have further evaluated the three top-performing pro-
grams on our second evaluation environment with a dif-
ferent number of threads. In Figure 23, the results are
shown. For all programs a higher number of threads
reduces the runtime. The results show a similar behav-
ior as when joining READS: it seems that performing a
join with a small k usually is better with a small number
of threads, while for larger values of k it makes indeed
sense to use parallelism.

6. POST-COMPETITION ANALYSIS
The main results of our competition are shown in Fig-
ure 11. For each task and dataset we list the techniques
used by the three top performing teams. The partition-
ing and pruning techniques of Team 1 show the best
performance for three out of four problems. Only for
searching our READS dataset, the acyclic word graph
of Team 4 slightly outperforms Team 1’s techniques.
In the following we discuss our results and relate them
to existing work not covered by the competition.

6.1 Additional algorithms
We compare the results of the competition to exist-
ing tools for approximate string search. We only take
into account non-dominated methods from Figure 1, for
which no participant of our competition had a direct
contribution. The only such non-dominated method
is SSI [9]. In addition, we test two other methods:
Flamingo [3], which is often used as baseline for eval-
uation, and Pearl [23], a prefix tree index. The results
are shown in Figure 12, together with the comparison of
the best three ranked programs from our competition.

S

1_A

1_B

3_A

4_A
4_B

5_B
5_C

5_D 7_A

9_A

100

1,000

10,000

100,000

1 10 100 1,000 10,000

Se
ar

ch
 t

im
e

 (
in

 s
)

Indexing time (in s)

1_A 1_B

3_A
4_A

4_B

5_B
5_C

5_D
6_A

8_A

9_A

10

100

1,000

10,000

0 1 10 100 1,000 10,000

Se
ar

ch
 t

im
e

 (
in

 s
)

Indexing time (in s)

Figure 8: Search/Indexing times for READS-HUGE (left) and CITIES-HUGE (right) [time in seconds].

Prog. k=0 k=4 k=8 k=12 k=16

1_A 0.2 1.0 3.7 84.4 1,377.3

1_B 0.2 0.9 8.9 231.0 -

3_A 258.8 5,760.0 - - -

4_A 37.6 41.3 81.2 220.8 2,489.1

4_B 29.4 31.4 75.7 214.1 -

5_A - - - - -

5_B 0.5 12.4 126.7 2,590.4 -

5_C 0.5 12.1 111.9 - -

5_D 0.5 12.3 74.9 - -

9_A 5.5 1,197.5 - - -

READS-HUGE (time in minutes!)

Figure 9: Join times for READS-HUGE and differ-
ent k [time in minutes].

Prog. k=0 k=1 k=2 k=3 k=4

1_A 1.0 1.9 6.1 50.1 345.5

1_B 1.1 1.8 6.8 53.8 353.0

3_A 588.1 564.1 655.8 847.6 1,700.0

4_A 40.9 45.5 81.2 440.6 945.0

4_B 39.7 42.2 78.8 418.3 942.0

5_B 11.3 78.3 1,719.2 - -

5_C 11.3 37.1 726.2 11,462.5 -

5_D 11.4 32.8 785.9 - -

8_A 3.3 21.2 218.2 3,339.2 21,230.0

9_A 10.9 28.9 198.7 1,912.9 -

CITIES-HUGE

Figure 10: Join times for CITIES-HUGE and dif-
ferent k [time in seconds].

Unfortunately, Flamingo has only implemented approx-
imate search, no approximate join. We run Flamingo
with the standard configuration (filters as set by the
Getting-Started-example) and different length of q-grams.
Index and search times are considerably longer than
many of the competitors in our competition. However,
note that Flamingo makes only use of one thread and
the memory footprint seems to be very small. Possibly,
performance of Flamingo can be further improved by ad-
ditional filters. We have tested SSI only on the READS
datasets. For each CITIES dataset, SSI stopped with
a insufficient memory exception. This might be a bug
affecting the handling of large alphabets.
The best programs from our competition outperform
these tools by a factor of 1000 and more for READS-
MEDIUM and a factor of 50 and more for CITIES-
HUGE. In addition, we have evaluated Pearl for joining
GEONAMES datasets: Even for GEONAMES-MEDIUM
and k = 4, Pearl needs more than 1 hour to compute
the self-join, while 1 A needs less than 2 minutes. Given

place READS CITIES

1 4_A (acyclic word graph) 1_A (partitioning and pruning)

2 1_A (partitioning and pruning) 4_A (acyclic word graph)

3 5_B (radix/Suffix trees) 3_A (bit-parallel LCS computation)

1 1_A (partitioning and pruning) 1_A (partitioning and pruning)

2 4_A (acyclic word graph) 4_B (acyclic word graph)

3 5_B (radix/Suffix trees) 3_A (bit-parallel LCS computation)

se
ar

ch
jo

in

Figure 11: Overall ranking for search and join.

CITIES:
Prog. Index Search Index Search Index Search

Flamingo |q|=2 0.1 4.7 0.2 26.6 - -
Flamingo |q|=3 0.2 7.6 0.4 42.8 - -
Flamingo |q|=4 0.2 9.7 0.5 55.4 - -

Pearl 2.9 33.5 6.4 74.9 99.4 2,541.1
SSI
1_B 0.1 0.4 0.2 0.9 1.7 46.8
4_B 3.9 0.7 7.0 1.6 39.9 67.3
3_A 0.0 3.0 0.0 6.1 0.2 109.6

READS:
Prog. Index Search Index Search Index Search

Flamingo |q|=5 2.1 45.9 - - - -
Flamingo |q|=6 2.3 44.1 36.8 6,052.2 - -
Flamingo |q|=7 3.0 443.7 - - - -

Pearl 10.1 3,567.0 - - - -
SSI 0.4 27.7 1.2 5,032.1 - -
4_A 29.3 0.2 291.0 4.6 2,251.8 232.5
1_A 1.1 0.4 10.3 4.3 108.0 312.1
5_B 2.4 0.7 15.8 8.7 192.2 580.8

SMALL MEDIUM HUGE

SMALL MEDIUM HUGE

Figure 12: Indexing and Search times for Flamingo,
Pearl, and SSI [time in seconds].

the existing evaluation results from Figure 1, for each
non-dominated method either one of its authors has
contributed to our competition (Pass-Join, Trie-Join,
PPJoin, NGPP) or the method (SSI) was shown to be
way less scalable than our best programs. Therefore, we
believe that our analysis represents the state-of-the-art
in string similarity search and join.

6.2 Memory usage
We show the peak main memory usage with respect to
READS-Huge in Figure 24. Programs 5 B, 5 C, and
5 D only use around 13.6 GB of main memory, followed
by 3 A with 15.6 GB. The maximum amount of main
memory is used by 9 A with 40.6 GB. The average main
memory is 24.2 GB, which means that all the programs
make use of roughly half of the main memory avail-
able.. In Figure 25, the peak main memory usage for
the dataset CITIES-HUGE is shown. Most of the pro-
grams show modest memory usage; the average is only
6 GB. The most main memory is used by Program 6 A:
24.7 GB, followed by 4 A and 4 B with 12-13 GB. Pro-

0
5

10
1_B

0
5

10
2_A

0
5

10
3_A

0
8

16
4_A

0
5

10
5_A

0
5

10
5_B

0
5

10
6_A

0
5

10
8_A

0
5

10
9_A

Figure 13: Searching CITIES-LARGE: number of
active threads from the beginning of the program
until its termination. Note that all the programs
had a different run time, the x-axis has a different
scale for each program.

GEONAMES

1_A 1_B 3_A 4_A 4_B 5_A 5_B 5_C 5_D 9_A

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 8 1 8 8 1

1 1 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 1

9 5 1 1 1 8 1 8 8 1

3 9 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 1

9 9 1 1 1 8 1 8 8 8

9 1 1 1 1 8 1 8 8 8

1 1 1 1 1 8 1 8 8 8

1 1 1 1 8 1 8 8 8

1 1 1 8 1 8 8 8

1 1 1 8 1 9 8 8

1 1 1 8 1 9 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 9 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

1 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 9 9 8

8 1 1 8 8 9 9 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 8 8

8 1 1 8 8 9 8 8

8 1 1 8 8 9 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 9 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 8 8 8 8 8

8 1 1 9 8 8 9 8

8 1 1 9 8 8 9 8

8 1 1 8 8 9 8 8

8 1 16 8 8 9 8 8

8 1 16 8 8 8 9 8

0
5

10
1_B

0
5

10
3_A

0
8

16
4_A

0
5

10
5_B

0
5

10
9_A

0
5

10
1_B

0
5

10
3_A

0
8

16
4_A

0
5

10
5_B

0
5

10
9_A

Figure 14: Joining READS-Medium with k=4:
number of active threads from the beginning of the
program until its termination.

gram 9 A only uses 0.6 GB of main memory. Thus, most
of the main memory is left unused. We conjecture that
it might be possible to further improve query answering
times for some techniques by pre-computation of more
sophisticated index structures.

6.3 CPU utilization
In Figure 13, the number of active threads is shown over
time when searching CITIES-LARGE. The graphs of
1 A, 4 B, 5 C, and 5 D are not shown since they are very
similar to 1 B, 4 A, 5 B, and 5 B, respectively. Most of
the programs start preprocessing with one thread and
then increase the number of threads. Program 3 A is
the only program which does not follow this pattern.
Load scheduling of programs 1 B and 4 A can possibly
be improved, since these programs do not make constant
use of the full number of available cores. Program 4 A
has a long single-thread preprocessing phase; queries are
answered using 16 threads.
In Figure 14, the number of active threads is shown
over time when joining READS-MEDIUM with k = 4.
The graphs of 1 A, 4 B, 5 C, and 5 D are not shown
since they are very similar to 1 B, 4 A, 5 B, and 5 B,
respectively. The overall join time for 1 B is only few
seconds, so the graph is not as stable as the other ones.
For Program 4 A and 5 B the preprocessing phase can
be clearly identified (with only one thread). Program
4 A makes use of 16 threads again instead of only 8.
Program 9 A uses 8 threads for most of the time. (only
the first few seconds are run with only one thread).

6.4 Redundancy
The official rules allowed to serialize the same answer
several times: sometimes the same result is found by dif-
ferent components of a search algorithm independently.
In Figure 26, we analyze the redundancy in the results.
The programs of Team 4 and Team 5 report answers
several times (in average 4-6 times). All other programs
report each answer only once (baseline 100 percent).

7. CONCLUSION
We believe that our evaluation gives a fairly represen-
tative picture of the state-of-the-art in string similarity
search and join for different data set sizes, different al-
phabet sizes, and different error thresholds.. Based on
our datasets and competing programs, we conclude that
an error rate of 20-25% pushes today’s techniques to the
limit. For instance, self-joining a set of 15.000.000 se-
quence reads of length 100 with an edit distance thresh-
old k = 16 takes almost one day even for the best
participant. However, the final result has more than
50.000.000 entries, which makes the usefulness of such
queries in real applications questionable.
Our experiments showed that many participants used
less main memory than available. The effect is per-
spicuous for our CITIES dataset: more than half of the
competitors used less than 10 percent of the main mem-
ory. An interesting lead for future research are indexing
strategies that make full use of existing main memory.
Even for smaller datasets, query answering times might
be further reduced by more precomputation at indexing
time.
Although we have ranked programs based on search
time, we have also measured indexing time separately.
We found that indexing times vary a lot between im-
plementations; in addition many programs use only one
thread for indexing. Another point that could be im-
proved as revealed by our analysis is to improve thread
utilization, especially for current hardware with their
quickly increasing number of cores.
It is interesting to note that the three top perform-
ing teams use difference techniques. Combining these
techniques, e.g. the bit-parallel LCS computation from
Team 3 with the pruning techniques of Team 1, could
probably reduce search and join times beyond the state-
of-the-art.

8. ACKNOWLEDGMENTS
We thank Nikolaus Augsten for his insightful comments
on a draft version of this paper. In addition, we thank
Thomas Stoltmann for providing us Figure 1.

9. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient

exact set-similarity joins. In PVLDB, VLDB ’06,
pages 918–929. VLDB Endowment, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up
all pairs similarity search. In Proceedings of the
16th international conference on World Wide
Web, WWW ’07, pages 131–140, New York, NY,
USA, 2007. ACM.

[3] A. Behm, R. Vernica, S. Alsubaiee, S. Ji, J. Lu,
L. Jin, Y. Lu, and C. Li. UCI Flamingo Package
4.1, 2010.

[4] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical
report, Digital SRC Research Report, 1994.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in
metric spaces. In PVLDB, VLDB ’97, pages
426–435, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[6] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon,
and J. F. Reid. A fast and practical bit-vector
algorithm for the Longest Common Subsequence
problem. Information Processing Letters, 80(6),
Dec. 2001.

[7] D. Dey, S. Sarkar, and P. De. A distance-based
approach to entity reconciliation in heterogeneous
databases. IEEE Trans. Knowl. Data Eng.,
14(3):567–582, 2002.

[8] J. Feng, J. Wang, and G. Li. Trie-join: a
trie-based method for efficient string similarity
joins. The VLDB Journal, 21(4):437–461, 2012.

[9] D. Fenz, D. Lange, A. Rheinländer, F. Naumann,
and U. Leser. Efficient similarity search in very
large string sets. In A. Ailamaki and S. Bowers,
editors, Scientific and Statistical Database
Management, volume 7338 of Lecture Notes in
Computer Science, pages 262–279. Springer Berlin
Heidelberg, 2012.

[10] X. Ge and P. Smyth. Deformable Markov model
templates for time-series pattern matching. In
Proceedings of SIGKDD, pages 81–90, New York,
NY, USA, 2000. ACM.

[11] S. Gerdjikov, S. Mihov, P. Mitankin, and K. U.
Schulz. Good parts first - a new algorithm for
approximate search in lexica and string databases.
ArXiv e-prints, Jan. 2013.

[12] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In PVLDB,
VLDB ’99, pages 518–529, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[13] M. Henzinger. Finding near-duplicate web pages:
a large-scale evaluation of algorithms. SIGIR ’06,
pages 284–291, New York, NY, USA, 2006. ACM.

[14] H. Hyyrö, K. Fredriksson, and G. Navarro.
Increased bit-parallelism for approximate and
multiple string matching. ACM Journal of
Experimental Algorithmics, 10, 2005.

[15] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join:
A partition-based method for similarity joins.
PVLDB, 5(3):253–264, 2011.

[16] H. Li and R. Durbin. Fast and accurate short read
alignment with Burrows-Wheeler transform.
Bioinformatics (Oxford, England),
25(14):1754–1760, 2009.

[17] Y. Li, A. Terrell, and J. M. Patel. WHAM: a
high-throughput sequence alignment method.
SIGMOD ’11, pages 445–456. ACM, 2011.

[18] S. Mihov and K. U. Schulz. Fast approximate

search in large dictionaries. Computational
Linguistics, 30(4):451–477, 2004.

[19] P. Mitankin, S. Mihov, and K. U. Schulz.
Deciding word neighborhood with universal
neighborhood automata. Theoretical Computer
Science, 412(22):2340 – 2355, 2011.

[20] I. Moraru and D. G. Andersen. Exact pattern
matching with feed-forward Bloom filters. J. Exp.
Algorithmics, 17(1):3.4:3.1–3.4:3.18, Sept. 2012.

[21] G. Navarro and R. Baeza-Yates. A hybrid
indexing method for approximate string matching.
Journal of Discrete Algorithms, 1(1):205–239,
2000.

[22] M. Patil, S. V. Thankachan, R. Shah, W.-K. Hon,
J. S. Vitter, and S. Chandrasekaran. Inverted
indexes for phrases and strings. In SIGIR 2011,
pages 555–564, 2011.

[23] A. Rheinländer and U. Leser. Scalable sequence
similarity search and join in main memory on
multi-cores. In Proceedings of the 2011
international conference on Parallel Processing -
Volume 2, Euro-Par’11, pages 13–22, Berlin,
Heidelberg, 2012. Springer-Verlag.

[24] E. Siragusa, D. Weese, and K. Reinert. Fast and
accurate read mapping with approximate seeds
and multiple backtracking. Nucleic acids research,
Jan. 2013.

[25] B. S. T. Bocek, E. Hunt. Fast Similarity Search in
Large Dictionaries. Technical Report ifi-2007.02,
April 2007. http://fastss.csg.uzh.ch/.

[26] A. Tiskin. Semi-local longest common
subsequences in subquadratic time. J. Discrete
Algorithms, 6(4):570–581, 2008.

[27] E. Ukkonen. Algorithms for approximate string
matching. Information Control, 64:100–18, 1985.

[28] G. Wang, B. Wang, X. Yang, and G. Yu.
Efficiently indexing large sparse graphs for
similarity search. IEEE Trans. Knowl. Data Eng.,
24(3):440–451, 2012.

[29] W. Wang, C. Xiao, X. Lin, and C. Zhang.
Efficient approximate entity extraction with edit
distance constraints. SIGMOD ’09, pages 759–770,
New York, NY, USA, 2009. ACM.

[30] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda,
and K. Sadakane. Efficient error-tolerant query
autocompletion. PVLDB, 2013.

[31] C. Xiao, W. Wang, and X. Lin. Ed-join: an
efficient algorithm for similarity joins with edit
distance constraints. PVLDB, 1(1):933–944, Aug.
2008.

[32] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In
Proceedings of the 17th international conference
on World Wide Web, WWW ’08, pages 131–140,
New York, NY, USA, 2008. ACM.

[33] C. Xiao, W. Wang, X. Lin, J. X. Yu, and
G. Wang. Efficient similarity joins for
near-duplicate detection. ACM Trans. Database
Syst., 36(3):15, 2011.

Prog. 1 100 10,000 100,000 200,000

1_A 199.0000 1.9900 0.0225 0.0042 0.0031

1_B 205.0000 2.0100 0.0220 0.0048 0.0032

2_A - - - - -

3_A 1,625.0000 18.3100 3.0682 4.2107 3.8523

4_A 83.0000 0.7800 0.0101 0.0041 0.0035

4_B 107.0000 0.8700 0.0101 0.0043 0.0030

5_A 50.0000 234.5200 - - -

5_B 52.0000 0.2200 0.0211 0.0160 0.0142

5_C 38.0000 0.1800 0.0228 0.0174 0.0138

5_D 44.0000 0.2100 0.0214 0.0155 0.0144

7_A 116.0000 1.5600 0.5538 0.5519 0.5423

9_A 279.0000 25.7800 24.0174 25.8930 24.8394

READS-MEDIUM - Number of queries

Figure 15: Batch effect for READS-MEDIUM:
Time per query for a different number of total
queries (1-200,000 queries) [time in milliseconds].

Prog. k=0 k=4 k=8 k=12 k=16

1_A 0.2 0.2 0.3 1.5 25.4

1_B 0.2 0.2 0.4 3.1 42.1

2_A - - - - -

3_A 2.9 30.9 136.2 335.8 972.6

4_A 0.1 0.1 0.4 3.3 17.8

4_B 0.1 0.1 0.4 3.5 20.1

5_A - - - - -

5_B 0.1 0.2 0.9 19.5 56.4

5_C 0.1 0.2 3.9 9.1 108.4

5_D 0.1 0.2 5.2 44.7 160.8

7_A 0.4 5.6 6.4 20.5 30.5

9_A 117.3 242.0 242.5 311.2 1,749.3

MEDIUM

Figure 16: Search times for READS-MEDIUM and
different values of k [time in seconds].

Prog. k=0 k=1 k=2 k=3 k=4

1_A 0.0 0.0 0.1 0.5 3.5

1_B 0.0 0.0 0.1 0.6 3.0

2_A 8.0 7.0 7.2 16.7 21.3

3_A 5.3 5.2 5.5 6.0 8.0

4_A 0.0 0.0 0.1 0.9 6.2

4_B 0.0 0.0 0.2 0.9 5.9

5_A 178.4 172.8 154.3 159.9 194.7

5_B 0.0 0.6 6.2 63.3 206.1

5_C 0.0 0.7 9.2 39.1 199.1

5_D 13.6 11.9 24.6 58.4 119.0

6_A 0.3 2.3 5.4 7.8 15.4

8_A 0.1 0.1 0.6 4.0 18.4

9_A 0.0 0.1 0.3 2.5 9.1

MEDIUM

Figure 17: Search times for CITIES-MEDIUM [time
in seconds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.5 1.1 1.6 4.4 9.6

1_B 0.5 0.6 1.8 4.6 9.9

3_A 2.0 8.3 200.3 1,836.1 15,531.2

4_A 2.5 29.8 288.5 870.0 2,258.0

4_B 2.0 23.8 234.5 709.9 1,764.5

5_A 19.5 1,813.8 - - -

5_B 2.5 3.3 5.2 9.5 30.8

5_C 2.5 3.3 4.7 9.2 30.9

5_D 2.5 4.0 5.1 9.2 30.6

9_A 0.5 1.2 7.0 9.1 328.7

READS k=0

Figure 18: Join times for READS and k = 0 [time
in seconds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.7 3.0 10.5 117.0 345.5

1_B 0.9 3.0 11.0 119.5 353.0

3_A 6.5 31.0 68.5 577.0 1,700.0

4_A 2.0 17.0 54.0 807.0 945.0

4_B 2.5 17.0 57.5 810.0 942.0

5_A 10.4 205.5 982.5 - -

5_B 13.8 241.0 920.5 - -

5_C 15.0 226.5 926.0 - -

5_D 22.6 266.0 838.5 2,401.0 -

8_A 6.0 141.5 532.5 3,585.0 21,230.0

9_A 16.1 193.5 578.5 - -

CITIES k=4

Figure 19: Join times for CITIES and k=4 [time in
seconds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.5 9.8 1,028.3 11,283.9 82,636.5

1_B 0.5 26.0 2,941.0 33,055.5 -

3_A 26.0 1,732.3 - - -

4_A 33.1 362.8 4,048.4 25,823.9 149,344.1

4_B 32.5 361.7 - - -

5_A 19.8 2,217.3 - - -

5_B 4.1 50.8 4,200.9 - -

5_C 31.0 431.0 - - -

5_D 40.0 625.0 - - -

9_A 159.7 9,327.3 - - -

READS k=16

Figure 20: Join times for READS and k = 16 [time
in seconds].

Threads Progr. k=0 k=4 k=8 k=12 k=16

1_A 1.22 8.51 16.22 87.95 1,000.14

4_A 460.37 470.45 633.01 1,724.68 6,077.06

5_B 3.04 80.29 213.45 3,538.78 10,230.97

1_A 1.23 6.76 10.76 33.96 381.07

4_A 460.26 462.56 576.99 869.19 2,354.78

5_B 5.63 55.41 162.01 3,679.70 9,808.58

1_A 1.22 6.64 9.57 23.61 335.73

4_A 469.87 460.93 486.23 645.42 1,318.72

5_B 3.76 52.55 188.61 3,437.48 5,157.10

8

24

80

READS-MEDIUM

Figure 21: Join times for READS-MEDIUM on Sys-
tem 2 [time in seconds].

Prog. TINY SMALL MEDIUM LARGE HUGE

1_A 0.6 0.6 0.6 0.6 1.0

1_B 0.8 0.7 0.7 0.6 1.1

3_A 5.8 28.4 56.7 287.2 588.1

4_A 1.9 4.2 7.0 24.9 40.9

4_B 1.7 4.3 7.2 25.0 39.7

5_A 7.7 175.1 850.1 - -

5_B 4.7 4.6 4.5 6.7 11.3

5_C 4.6 4.7 4.8 6.3 11.3

5_D 4.9 4.8 4.8 6.2 11.4

8_A 1.0 0.6 0.9 1.4 3.3

9_A 0.7 1.0 0.6 3.4 10.9

CITIES k=0

Figure 22: Join times for CITIES and k=0 [time in
seconds].

Threads Progr. k=0 k=1 k=2 k=3 k=4

1_A 0.06 0.30 0.53 1.83 8.12

4_A 10.40 10.35 11.15 17.06 46.00

5_B 1.45 4.17 56.12 376.39 2,513.64

1_A 0.08 0.27 0.38 0.94 3.14

4_A 10.42 10.37 10.69 12.60 22.76

5_B 5.76 4.07 65.28 760.71 2,353.97

1_A 0.11 0.31 0.39 0.85 2.42

4_A 10.47 10.46 10.48 11.37 16.76

5_B 2.38 3.92 42.47 532.91 2,051.15

24

80

CITIES-MEDIUM

8

Figure 23: Join times for CITIES-MEDIUM on Sys-
tem 2 [time in seconds].

0.0
10.0
20.0
30.0
40.0
50.0

1_A 1_B 3_A 4_A 4_B 5_B 5_C 5_D 7_A 9_A

M
em

o
ry

 (
G

B
)

Figure 24: Peak main memory usage for READS-
HUGE [memory in GB].

0.1

1

10

100

1_A 1_B 3_A 4_A 4_B 5_B 5_C 5_D 6_A 8_A 9_A

M
em

o
ry

 (
G

B
)

Figure 25: Peak main memory usage for CITIES-
HUGE [memory in GB].

Prog. 1 100 10,000 100,000 200,000

1_A 100.0% 100.0% 100.0% 100.0% 100.0%

1_B 100.0% 100.0% 100.0% 100.0% 100.0%

2_A - - - - -

3_A 100.0% 100.0% 100.0% 100.0% 100.0%

4_A 100.0% 200.0% 645.8% 479.2% 609.1%

4_B 100.0% 200.0% 645.8% 479.2% 609.1%

5_A 100.0% 200.0% 445.8% 479.8% 465.7%

5_B 100.0% 200.0% 445.8% 479.8% 465.7%

5_C 100.0% 200.0% 445.8% 479.8% 465.7%

5_D 100.0% 200.0% 445.8% 479.8% 465.7%

7_A 100.0% 100.0% 100.0% 100.0% 100.0%

9_A 100.0% 100.0% 100.0% 100.0% 100.0%

READS-MEDIUM - Number of queries

Figure 26: Result redundancy: Searching READS-
MEDIUM with k=4 for different number of queries
(1-200,000) [redundancy in percent; 100% stands for
no redundant results; 200% means that in average
each result is reported twice].

