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ABSTRACT

We study the string similarity search problem with edit-
distance constraints, which, given a set of data strings and
a query string, finds the similar strings to the query. Ex-
isting algorithms use a signature-based framework. They
first generate signatures for each string and then prune the
dissimilar strings which have no common signatures to the
query. However existing methods involve large numbers of
signatures and many signatures are unnecessary. Reduc-
ing the number of signatures not only increases the pruning
power but also decreases the filtering cost. To address this
problem, we propose a novel pivotal prefix filter which sig-
nificantly reduces the number of signatures. We prove the
pivotal filter achieves larger pruning power and less filter-
ing cost than state-of-the-art filters. We develop a dynamic
programming method to select high-quality pivotal prefix
signatures to prune dissimilar strings with non-consecutive
errors to the query. We propose an alignment filter that
considers the alignments between signatures to prune large
numbers of dissimilar pairs with consecutive errors to the
query. Experimental results on three real datasets show that
our method achieves high performance and outperforms the
state-of-the-art methods by an order of magnitude.

Categories and Subject Descriptors
H.2 [Database Management]: Database applications;
H.3.3 [Information Search and Retrieval]: Search process

Keywords
Similarity search; pivotal prefix filter; edit distance

1. INTRODUCTION
String similarity search that finds similar strings of a query

string from a given string collection is an important opera-
tion in data cleaning and integration. It has attracted signif-
icant attention due to its widespread real-world application-
s, such as spell checking, copy detection, entity linking, and
macromolecules sequence alignment [9,13,26]. Edit distance
is a well-known metrics to quantify the similarity between
strings. Two strings are said to be similar if their edit dis-
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tance is not larger than an edit-distance threshold. Many
existing systems, e.g., Oracle1, PostgreSQL2 and Lucene3,
support string similar search with edit-distance constraints.

Existing studies to address this problem usually employ
a filter-verification framework [3,6,9,13,14,26]. In the filter
step, they devise effective filters, utilize the filters to prune
large numbers of dissimilar strings, and obtain some candi-
dates. In the verification step, they verify the candidates
to generate the final answers by computing their real edit
distances to the query. Existing methods focus on devising
effective filters to achieve high pruning power. The prefix fil-
ter [2,4] is a dominant filtering technique. It first generates
a prefix for each string such that if two strings are similar,
their prefixes share a common signature. It then utilizes this
property to prune large numbers of dissimilar strings that
have no common signatures to the query. Some signature-
based filters are proposed to improve the prefix filter, such
as position prefix filter [24,25], adaptive prefix filter [21], and
symmetric filter [17].

It is worth noting that the number of signatures has an
important effect on the pruning power and filtering cost.
On one hand, reducing the number of signatures will de-
crease the matching probability between the signatures of
two strings, and thus the pruning power will become larger.
On the other hand, reducing the number of signatures will
decrease the comparison cost to check whether two strings
share common signatures, and the filtering cost will also
decrease. Accordingly, reducing the number of signatures
not only increases the pruning power but also decreases the
filtering cost. However, simply reducing the number of sig-
natures may lead to miss results, and it calls for effective
methods which can reduce the number of signatures with-
out missing any results.

To address this problem, we propose a pivotal prefix fil-
ter which can significantly reduce the number of signatures
while still finding all results. We prove that the pivotal pre-
fix filter outperforms state-of-the-art filters in terms of both
pruning power and filtering cost. As there may be multi-
ple strategies to generate pivotal prefixes, we develop a dy-
namic programming method to select high-quality pivotal
prefix signatures in order to prune large numbers of dissim-
ilar strings with non-consecutive errors to the query. When
there are many consecutive errors, the pivotal prefix filter
may generate many false positives. To address this issue, we
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propose an alignment filter that considers the alignments be-
tween signatures to prune large numbers of dissimilar pairs
with consecutive errors to the query.

To summarize, we make the following contributions.
• We propose a novel pivotal prefix filter which has much

smaller signature size than existing filters while still
finding all results. We prove that our pivotal prefix
filter has larger pruning power and less filtering cost
than state-of-the-art filters.
• We develop effective techniques to select high-quality

pivotal prefix signatures to prune dissimilar strings
with non-consecutive errors to the query.
• We propose an alignment filter to prune dissimilar

strings with consecutive errors to the query.
• Experimental results show the superiority of our method

in terms of both performance and pruning power com-
pared to state-of-the-art approaches.

The rest of the paper is organized as follows. We formulate
the problem and review related works in Section 2. Section 3
introduces our pivotal prefix filter. We present the frame-
work in Section 4 and propose to select high-quality pivotal
signatures in Section 5. We propose an alignment filter in
Section 6 and generalize the method in Section 7. We con-
duct experiments in Section 8 and conclude in Section 9.

2. PRELIMINARIES

2.1 Problem Definition
The string similarity search problem takes as input a string

dataset, a query string, a similarity metrics, and a similari-
ty threshold and outputs all the strings in the dataset that
are similar to the query string. A variety of functions have
been proposed to measure the similarity of two strings [20].
In this paper we focus on the edit-distance function. The
edit distance between two strings r and s is the minimum
number of edit operations needed to transform one string to
another, denoted as ed(r, s). There are three kinds of edit
operations, insertion, deletion and substitution. For exam-
ple, ed(“youtbecom”, “yotdecom”)= 2 as the first one can be
transformed to the second one by deleting ‘u’ and substitut-
ing ‘b’ for ‘d ’.

Next we formally define the similarity search problem with
edit-distance constraints as below.

Definition 1 (String Similarity Search). Given a
string dataset R, a query string s, and an edit-distance thresh-
old τ , the string similarity search with edit-distance con-
straints finds all strings r ∈ R such that ed(r, s) ≤ τ .

For example, consider the dataset R with 5 strings and
the query s = “yotubecom” in Table 1. Suppose the edit-
distance threshold is τ = 2. r4 = “youtbecom” is a result as
ed(“yotubecom”, “youtbecom”) = 2 ≤ τ .

2.2 q-gram-based Filters
q-grams. Many existing studies use q-grams to support
similarity search. A q-gram of a string is its substring with
length q. For example, the 2-gram set of the query string
s = “youtbecom” in Table 1 is {yo,ou,ut,tb,be,ec,co,om}. A
positional q-gram is the q-gram associated with its start po-
sition in the string. For example, 〈yo, 1〉, 〈ou, 2〉, · · · , 〈om, 8〉
are positional q-grams of s. We use q-grams and positional
q-grams interchangeably if the context is clear.
Count Filter. As one edit operation destroys at most τ
q-grams, if two strings are similar, they require to share e-
nough common q-grams. Using this property, existing meth-
ods propose the count filter [13]: Given two strings r and

s, if they share less than max(|r|, |s|) − q + 1− qτ common
grams, they cannot be similar, where |r| is the length of r.
Prefix Filter. For each string s, the prefix filter first sorts
the q-grams using a universal order and selects the first qτ+1
q-grams as the prefix. Given two strings r and s, based on
the count filter, if their prefixes have no common q-gram,
they must have less than max(|r|, |s|)−q+1−qτ common q-
grams. Using this property, existing methods use the prefix
filter to do pruning [24]: Given two strings r and s, if their
prefixes have no common q-gram, they cannot be similar.
Mismatch Filter. The mismatch filter [24] improves the
prefix filter by selecting the minimum subset of the prefix
which requires τ + 1 edit operations to destroy the q-grams
in the subset. Obviously the prefix size of the mismatch
filter is between τ + 1 and qτ + 1.
Length Filter. If the length difference of two strings is
larger than τ , they cannot be similar.
Position Filter. When checking whether the prefixes of
two strings have common signatures, we only check their
signatures with position difference within τ , because for any
transformation from a string to another in which the two
signatures with position difference larger than τ are aligned,
the number of edit operations in the transformation must
be larger than τ (as the length difference of prefixes of the
two strings before the matching signatures is larger than τ ).
Comparison with Existing Filters. Bayardo et. al. [2]
proposed a framework to support similarity search and join
using the prefix filter. Xiao et. al. proposed the position pre-
fix filter [25] and mismatch filter [24] to reduce the signature
size. Although we utilize the same filter-and-verification
framework to support similarity search, we propose the piv-
otal prefix to further reduce the signature size and develop
an alignment filter to effectively detect consecutive errors.

2.3 Related Work
String Similarity Search. There are many studies on
string similarity search [3,6,9,13,14,26]. Most of them uti-
lized a signature-based framework where strings are similar
to the query only if they share common signatures with the
query. Li et. al. [13] proposed to use q-grams as signatures
and studied how to efficiently merge q-gram-based inverted
lists to achieve high search performance. Zhang et. al. [26]
also used q-grams as signatures and utilized B+-tree index
structure to index q-grams and support range and ranking
queries. Li et. al. [14] proposed variable length q-grams
(VGram) as signatures to support string similarity search.
Chaudhuri et. al. [3] proposed a new similarity function and
devised efficient search algorithms to support the function.
Hadjieleftheriou et. al. [9] addressed the data update prob-
lem in similarity search. Deng et. al. [6] studied the top-k
similarity search problem using a trie index structure.
Similarity Joins. The string similarity joins that find all
similar string pairs from two datasets have also been stud-
ied [1,2,4,7,8,11,15,17,19,21,22,25]. An experimental study
is taken in [11]. AllPair [2] utilized the prefix filter to do sim-
ilarity joins. PPJoin [25] proposed the prefix position filter
and the suffix position filter to improve AllPair. ED-Join [24]
proposed the location-based mismatch filter and the con-
tent filter to reduce the prefix length and detect consecutive
errors. AdaptJoin [21] proposed an adaptive prefix filter
framework to adaptively select the prefixes. PassJoin [15]
partitioned strings into a fixed number of segments, took
segments as signature and studied how to select the mini-
mum number of substrings to reduce the number of candi-



Table 1: Dataset R and Query String s.
(a) Dataset R, q = 2 and τ = 2

id string |q(r)| positional prefix q-gram pre(r) universal order 〈order,q-gram, frequency〉
r1 imyouteca 8 {〈im, 1〉, 〈my, 2〉, 〈te, 6〉, 〈ca, 8〉, 〈yo, 3〉} 〈1 : im, 1〉〈2 : my, 1〉〈3 : te, 1〉〈4 : bu, 1〉
r2 ubuntucom 8 {〈bu, 2〉, 〈un, 3〉, 〈nt, 4〉, 〈uc, 6〉, 〈om, 8〉} 〈5 : un, 1〉〈6 : nt, 1〉〈7 : uc, 1〉〈8 : bb, 1〉
r3 utubbecou 8 {〈bb, 4〉, 〈ou, 8〉, 〈ut, 1〉, 〈ub, 3〉, 〈co, 7〉} 〈9 : tb, 1〉〈10 : oy, 1〉〈11 : yt, 1〉〈12 : ca, 2〉
r4 youtbecom 8 {〈tb, 4〉, 〈om, 8〉, 〈yo, 1〉, 〈ou, 2〉, 〈ut, 3〉} 〈13 : om, 2〉〈14 : yo, 3〉〈15 : ou, 3〉〈16 : ut, 3〉
r5 yoytubeca 8 {〈oy, 2〉, 〈yt, 3〉, 〈ca, 8〉, 〈yo, 1〉, 〈ub, 5〉} 〈17 : ub, 3〉〈18 : co, 3〉〈19 : tu, 3〉〈20 : be, 3〉〈21 : ec, 4〉

(b) Query
s =yotubecom pre(s) = {〈ot, 2〉, 〈om, 8〉, 〈yo, 1〉, 〈ub, 4〉, 〈co, 7〉}

Table 2: Notation Table
q(r)/q(s) q-gram set of r/s sorted by a universal or-

der.
pre(r)/pre(s) prefix of q(r)/q(s) with size qτ+1.

suf(r)/suf(s)
suffix of q(r)/q(s) with size
|q(r)| − |pre(r)|/|q(s)| − |pre(s)|.

piv(r)/piv(s)
τ + 1 disjoint q-grams selected from
pre(r)/pre(s).

dates. Qchunk [17] partitioned strings into several chunks
with a fixed length as signatures and probed the q-grams to
generate candidates. Vchunk [22] improved Qchunk by allow-
ing various lengths of chunks. PartEnum [1] defined a model
to evaluate the candidate size based on the signature. We
extend the model to evaluate the filtering cost and pruning
power and utilize it to guide the filter design. TrieJoin [19]
utilized trie to support similarity joins. Gravano et. al. [8]
implemented similarity joins in databases.
Query Autocompletion: There are some studied on query
autocompletion [5,10,16,23], which finds strings with prefix-
es similar to the query. Ji et. al. [10] and Chaudhuri et.
al. [5] proposed to use a trie index to answer the query. Xiao
et. al. [23] proposed a neighborhood deletion based method
to solve the query autocompletion problem. Kim et. al. [12]
solved the top-k approximate substring matching problem.

3. THE PIVOTAL PREFIX FILTER
This section proposes a novel pivotal prefix filter(Section 3.1)

and compares it with state-of-the-art filters(Section 3.2).

3.1 The Pivotal Prefix Filter
Given two strings r and s, we first split each of them into

a set of q-grams, denoted as q(r) and q(s). Then we sort
q-grams in q(r) and q(s) by a universal order, e.g., q-gram
frequency in ascending order. Without loss of generality, we
first suppose the edit-distance threshold is given as τ and
will discuss how to support queries with different thresholds
in Section 7. We denote the prefixes of q(r) and q(s) with
size qτ + 1 as pre(r) and pre(s) respectively (see Table 2).
The prefix filter prunes 〈r, s〉, if pre(r) ∩ pre(s) = φ [2].

It is worth noting that some q-grams in the prefix are
unnecessary and we can select a subset of the prefix to do
further pruning. Obviously reducing the number of q-grams
not only increases the filtering power but also decreases the
filtering cost. For ease of presentation, we first introduce
some notations as shown in Table 2. We denote the suffix of
r with size |q(r)| − |pre(r)| as suf(r), i.e. suf(r) = q(r) −
pre(r). Two q-grams are said to be disjoint if they have
no overlap (i.e., the difference of their start positions is no
smaller than q). We select τ+1 disjoint q-grams from pre(r)
and denote the set of these q-grams as piv(r). It is worth
noting that there may be multiple cases of τ + 1 disjoint
q-grams in the prefix. Here we use piv(r) to denote any set
of τ +1 disjoint q-grams in piv(r). We will prove that there
must exist τ +1 disjoint q-grams in the prefix for any string
and discuss how to select high-quality disjoint q-grams in

y
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xy

Pre(s)

Suf(r)

Suf(s)

q

q

Piv(r)

Piv(s)
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Figure 1: The Pivotal Prefix Filter.

Section 5. Obviously we have piv(r) ⊆ pre(r). We call
the q-grams in pre(r) as prefix q-grams and the q-grams in
piv(r) as pivotal q-grams. The set of prefix q-grams is called
prefix and the set of pivotal q-grams is called pivotal prefix.

Example 1. Consider the query string s and the data
string r1 in Table 1. The global q-gram order is shown in Ta-
ble 1. Using this global order, we have q(r1) = {im,my,te,ca,
yo,ou,ut,ec} and q(s) = {ot,om,yo,ub,co,tu,be,ec}. Sup-
pose τ = 2, the prefix size is qτ +1 = 5. We have pre(r1) =
{im,my,te,ca,yo}, pre(s) = {ot,om,yo,ub,co}, suf(r1) =
{ou,ut,ec} and suf(s) = {tu,be,ec}. Here we randomly
select τ + 1 disjoint q-grams and set piv(r1) = {im,te,ca}
and piv(s) = {ot,om,ub}.

Cross Prefix Filter. For any strings r and s, we have
if pre(r) ∩ piv(s) = φ and piv(r) ∩ pre(s) = φ, r and s
cannot be similar. Lemma 1 proves the correctness of this
observation and Figure 1 also illustrates the basic idea why
the observation is correct.

Lemma 1. If strings r and s are similar, piv(r)∩pre(s) 6=
φ or pre(r) ∩ piv(s) 6= φ.

Proof. First, we prove piv(r) ∩ suf(s) = φ or piv(s) ∩
suf(r) = φ. We can prove it by contradiction. Suppose
piv(r) ∩ suf(s) 6= φ and piv(s) ∩ suf(r) 6= φ, and x ∈
piv(r) ∩ suf(s) and y ∈ piv(s) ∩ suf(r). On one hand we
have x ∈ piv(r) and y ∈ suf(r). As the q-grams are globally
sorted, x < y4. On the other hand we have y ∈ piv(s) and
x ∈ suf(s), and thus y < x. There is a contradiction and
thus piv(r) ∩ suf(s) = φ or piv(s) ∩ suf(r) = φ.

Second, we prove if r and s are similar, piv(r)∩ pre(s) +
piv(r)∩suf(s) 6= φ and piv(s)∩pre(r)+piv(s)∩suf(r) 6= φ.
As q(s) = pre(s)+suf(s), piv(r)∩q(s) = piv(r)∩pre(s)+
piv(r) ∩ suf(s). We first prove that if r and s are similar,
piv(r)∩q(s) 6= φ. We can prove it by contradiction. Suppose
piv(r)∩q(s) = φ. As (1) one edit operation changes at most
one disjoint q-gram in piv(r) and (2) piv(r) contains τ + 1
disjoint q-grams, it requires at least τ +1 edit operations to

4
When determining the global order, we avoid x = y by taking the

q-gram position into account.
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Figure 2: A Running Example.

transform r to s. This contradicts r and s are similar. Thus
piv(r)∩q(s) 6= φ, i.e., piv(r)∩pre(s)+piv(r)∩suf(s) 6= φ.
Similarly we prove piv(s) ∩ pre(r) + piv(s) ∩ suf(r) 6= φ.

Based on the first conclusion, we have two cases: (1) If
piv(r)∩suf(s) = φ, as piv(r)∩pre(s)+piv(r)∩suf(s) 6= φ
based on the second conclusion, we have piv(r)∩pre(s) 6= φ;
(2) piv(s)∩suf(r) = φ, as piv(s)∩pre(r)+piv(s)∩suf(r) 6=
φ based on the second conclusion, we have piv(s)∩pre(r) 6=
φ. In any case, piv(r) ∩ pre(s) 6= φ or pre(r) ∩ piv(s) 6= φ.
Thus the lemma is proved.

Recall the query string s and the data string r1 in Exam-
ple 1. As pre(r1) ∩ pre(s) = {yo} 6= φ, the prefix filter can-
not prune this pair. However, our method can prune this dis-
similar pair as pre(r1)∩piv(s) = φ and piv(r1)∩pre(s) = φ.

The cross prefix filter needs to check two intersections
piv(r)∩pre(s) and pre(r)∩piv(s), because only if piv(r)∩
pre(s) = φ and piv(s)∩ pre(r) = φ, we can prune the pair.
Next we will prove that we can only check one intersection.
For ease of presentation, we denote the last q-gram in pre(r)
as last(pre(r)). For example, the last q-grams of the five
strings and query string in Table 1 are “yo, om, co, ut, ub
and co” respectively. Based on last(pre(r)) and last(pre(s)),
we propose a novel pivotal prefix filter and Lemma 2 proves
the correctness of this filter.
Pivotal Prefix Filter. For any strings r and s, we have
Case 1: last(pre(r)) > last(pre(s)). If piv(s) ∩ pre(r) = φ,
r and s cannot be similar;
Case 2: last(pre(r)) ≤ last(pre(s)). If piv(r) ∩ pre(s) = φ,
r and s cannot be similar.

Lemma 2. If strings r and s are similar, we have
If last(pre(r)) > last(pre(s)), piv(s) ∩ pre(r) 6= φ;
If last(pre(r)) ≤ last(pre(s)), piv(r) ∩ pre(s) 6= φ.

Proof. Consider the first case, last(pre(r)) > last(pre(s)).
We first prove piv(s) ∩ suf(r) = φ. For any q-gram g ∈
piv(s) and g′ ∈ suf(r), as the q-grams are sorted, we have
g ≤ last(pre(s)) < last(pre(r)) < g′, which means g 6= g′.
Thus piv(s)∩ suf(r) = φ. Moreover, we have if r and s are
similar, piv(s)∩q(r) = piv(s)∩pre(r)+piv(s)∩suf(r) 6= φ
as proved in Lemma 1. Thus piv(s) ∩ pre(r) 6= φ.

Similarly, for the second case last(pre(r)) ≤ last(pre(s)),
we can prove that piv(r) ∩ pre(s) 6= φ.

Example 2. Consider the query string s and the data
string r2 in Table 1. We have pre(r2) = {bu,un,nt,uc,om}
and suppose piv(r2) = {bu,nt,uc}. As piv(s) ∩ pre(r2) =

{om} 6= φ, the filter based on Lemma 1 cannot prune this
pair. However, the pivotal prefix filter based on Lemma 2 can
prune this dissimilar pair as last(pre(r2))=om<last(pre(s)) =
co and piv(r2) ∩ pre(s) = φ.

Moreover, we can use the mismatch filter [24] to shorten
the prefix pre(r). It is worth noting that our pivotal prefix
filter still works for the shorter prefix and we will prove there
must exist at least τ +1 disjoint q-grams even in the shorter
prefix in Section 5. As the mismatch filter is orthogonal to
our method, we will not discuss the details.

3.2 Comparison with State-of-the-art Filters
We compare our pivotal prefix filter with state-of-the-art

q-gram-based filters. The objective of the q-gram-based fil-
ters is to prune dissimilar strings as many as possible. They
require to select a set of q-grams from each of two strings as
signatures, denoted as Sig(r) and Sig(s), and compare the
two q-gram sets to check whether they share common signa-
tures. Pruning power and filtering cost are two important
issues in designing filters.

We first consider the pruning power. One one hand, the s-
maller the production size of the two signature sets |Sig(r)|×
|Sig(s)|, the smaller probability they share common q-grams,
and thus the higher pruning power. On the other hand, the
number of matching q-grams cannot exceed the smaller sig-
nature size of the two strings, min(|Sig(r)|, |Sig(s)|). Thus
we can use the production size of two signature sets and
the smaller signature set size to evaluate the pruning pow-
er. We then evaluate the filtering cost. As the q-gram sets
are sorted, we can use a merge-join algorithm to find the
matching q-grams if there is no index, the filtering cost de-
pends on the sum of signature set sizes of the two strings,
|Sig(r)| + |Sig(s)|. If a hash index is built on a signature
set (Usually we build index to improve the performance as
discussed in Section 4), we can use a probe-based method
to check whether each q-gram in another signature set ap-
pears in the hash index, and in this case, the filtering cost
depends on the size of the probing signature set. Without
loss of generality, we use Sig(r) as the probing signature
set. Table 3 compares the pruning power and filtering cost
of state-of-the-art q-gram-based filters used in AllPair, ED-
Join, Qchunk-IndexChunk and Qchunk-IndexGram.

Given two strings r and s, the prefix filter [2] needs to se-
lect qτ+1 q-grams for both of the two strings as signatures.
Thus the production, the minimum, and the sum of the sizes
of its two signature sets are (qτ+1)2, qτ+1 and 2∗(qτ+1)
and the size of the probing set is qτ+1. The mismatch fil-

ter [24] improved the prefix filter by shortening prefix length.
The prefix length is in the range of [τ+1, qτ+1]. Thus the
production, the minimum and the sum of the sizes of the t-
wo signature sets are in [(τ+1)2, (qτ+1)2], [τ+1, qτ+1], and
[2∗(τ+1), 2∗(qτ+1)] and its probing set size is in [τ+1, qτ+1].
For Qchunk, it needs to select τ+1 chunks and l−(⌈(l−τ )/q)⌉−
τ ) + 1 q-grams as signatures, where l is the string length.
Thus the production, the minimum, and the sum of the
sizes of the two signature sets are (l−(⌈(l−τ )/q)⌉−τ )+1+τ+
1) ∗ (τ +1), τ +1 and (l−(⌈(l−τ )/q)⌉−τ )+1+τ+1)+(τ+1).
There are two indexing methods in Qchunk, the IndexChunk

and the IndexingGram, whose probing set sizes are l− (⌈(l−
τ )/q)⌉− τ )+1 and τ+1 respectively. Note that the number
of selected q-grams in Qchunk is rather large which depends
on the string length l. Our pivotal prefix filter uses the pre-
fix q-gram in pre(r) and the pivotal q-grams in piv(r) as
signatures. After comparing the two q-grams last(piv(r)),



Table 3: Comparison with State-of-the-art Filters.
Method |Sig(r)| |Sig(s)| Pruning Power Filtering Cost

Preifx Filter qτ + 1 qτ + 1 depends on depends on
Position Mismatch Filter τ + 1 to qτ + 1 τ + 1 to qτ + 1

|Sig(r)| × |Sig(s)| and Index: |Sig(r)| (Probe set size)
Qchunk-IndexGram l − (⌈ l−τ

q
⌉ − τ ) + 1 τ + 1

Qchunk-IndexChunk τ + 1 l − (⌈ l−τ

q
⌉ − τ ) + 1

min(|Sig(r)|, |Sig(s)|) No Index: |Sig(r)|+|Sig(s)|
Pivotal Prefix Filter τ + 1 to qτ + 1 τ + 1

it only requires to compare one pivotal q-gram set with
one prefix q-gram set. By integrating the mismatch fil-
ter, the production, the minimum, and the sum of the sizes
of the two signature sets are in [(τ+1)2, (qτ+1) ∗ (τ+1)],
τ+1, and [2∗(τ+1), qτ+1+τ+1]. The probing set size is in
[τ+1, qτ+1].

4. PIVOTAL PREFIX BASED FILTERING AL-

GORITHM
In this section, we propose the pivotal prefix based similar-

ity search method, called PivotalSearch, which contains
an offline index stage and an online query processing stage.
Indexing. Given a dataset R, we build two inverted index-
es: one for q-grams in the prefix set, denoted by I+; and
the other for q-grams in the pivotal prefix set, denoted by
I−5. We first sort the strings in R by their lengths. For
each string r ∈ R, we generate its prefix pre(r) and for each
q-gram g with position p in pre(r), we insert 〈r, p〉 into in-
verted list I+(g). Then we select the pivotal prefix piv(r)
and for each q-gram g with position p in piv(r), we insert
〈r, p〉 into inverted list I−(g). (We will discuss how to se-
lect pivotal prefix in Section 5.) For each q-gram g in I−

(and I+), we also build a hash mapM− (andM+), where
the entries are lengths of strings in I−(g) (and I+(g)) and
the values are start positions of the corresponding strings in
I−(g) (and I+(g)). Using the hash map, we can easily get
the strings on the inverted lists with a specific length (or
length range) and apply the length filter to do pruning.

Example 3. Considering the data strings in Table 1, sup-
pose the edit-distance threshold is τ = 2 and the gram length
is q = 2, Figure 2 shows the index for the given data strings.
We sort the strings in R and access the strings in order to
build the index. For r1, we split it into q-gram set q(r1)
and sort q(r1) by gram frequency in ascending order. As
qτ + 1 = 5, we identify the first 5 q-grams as prefix and
we have pre(r1) = {im,my,te,ca,yo}. We randomly select
τ + 1 = 3 disjoint q-grams to obtain the pivotal q-gram set
piv(r1) = {im,te,ca}. Next for the 5 prefix q-grams, we in-
sert the entries 〈r1, 1〉, 〈r1, 2〉, 〈r1, 6〉, 〈r1, 8〉, and 〈r1, 3〉 into
I+(im), I+(my), I+(te), I+(ca), and I+(yo) respective-
ly. For the 3 pivotal q-grams, we insert 〈r1, 1〉, 〈r1, 6〉, and
〈r1, 8〉 into I

−(im),I−(te), and I−(ca) respectively. Simi-
larly we insert r2, r3, r4 and r5 into the indexes. For each
inverted list I+(g)/I−(g), we build a hash map M+/M−.
For example, for the inverted list I+(im), we build a hash
map M+ contains entry 〈9, 1〉 as the the start position of
data strings with length 9 in I+(im) is 1.

The pseudo-code of our Indexing algorithm is shown in
Algorithm 1. It takes as input a string dataset R, a gram
length q and an edit-distance threshold τ and outputs two
inverted indexes I+ and I−. It first sorts all the strings in
R by length, splits all the strings into q-grams, and sorts
q-gram based on gram frequency (Lines 2 to 5). For each
sorted q-gram set q(r), it generates its prefix set pre(r),

5
Actually we only need to maintain one index. As the pivotal prefix

is a subset of the prefix, we use a special mark to indicate whether a
q-gram is a pivotal prefix.

Algorithm 1: PivotalSearch-Indexing (R, q, τ )

Input: R: A String Set; q: Gram Length; τ : Threshold
Output:I+: Prefix Index; I−: Pivotal Prefix Index

1 begin
2 Sort strings in R by length;
3 Generate q-gram set q(r) for r ∈ R;
4 Get a global order (e.g. tf);
5 Sort q-grams in q(r) using the order;
6 for r ∈ R do
7 Generate pre(r) ;
8 for each q-gram g ∈ pre(r) do
9 Insert 〈r, g.pos〉 into I+(g);

10 if M+(g)[|r|]=φ thenM+(g)[|r|]←|I+(g)|;

11 piv(r) =PivotsSelection(pre(r));
12 for each q-gram g ∈ piv(r) do
13 Insert 〈r, g.pos〉 into I−(g);

14 if M−(g)[|r|]=φ thenM−(g)[|r|]←|I−(g)|;

15 return 〈I+, I−〉;

inserts them into the inverted index I+ and updates the
hash mapM+ (Lines 6 to 10). Next it selects τ+1 pivotal q-
grams from pre(r) to generate piv(r), inserts them into the
inverted index I− and updates the hash mapM− (Lines 11
to 14). Finally it returns two indexes I− and I+ (Line 15).
Search Algorithm. Given a query string s, it outputs all
the strings in R which are similar to the query string. It
splits the query into q-grams, sorts them using the universal
order, and generates the prefix set pre(s) and selects pivotal
prefix set piv(s). Then for each q-gram g in piv(s), based
on the length filtering, s is only similar to the strings with
length between |s| − τ and |s|+ τ , thus it retrieves the start
position of strings with length |s| − τ in the inverted list
I−(g) using the hash map M−, i.e., start = M−(|s| − τ ),
and the end position, i.e., end =M−(|s|+ τ +1)−16. Then
we retrieve the list I−(g) and access the strings within range
[start, end], i.e., I−(g)[start, end]. For each element 〈r, p〉 in
the list, if last(pre(r)) > last(pre(s)) and |p − g.pos| ≤ τ ,
we add r as a candidate.7 Similarly, for each q-gram g in
pre(s), we utilize I+(g) andM+ to generate the candidates.
Finally we verify the candidates.

Example 4. Given the query s in Figure 2. We split it
into q-grams, sort them by a universal order, get pre(s) =
{ot,om,yo,ub,co} and randomly select piv(s) = {ot,om,ub}.
We probe the prefix q-grams index I+ using the pivotal q-
grams in piv(s). As the pivotal q-gram ‘ot’ does not appear
in the index, we get two inverted lists I+(om) = {〈r2, 8〉, 〈r4, 8〉}
and I+(ub) = {〈r3, 3〉, 〈r5, 5〉}. As last(pre(r2)), last(pre(r3)),
last(pre(r4)) and last(pre(r5)) are respectively om, co,ut,
and ub, which are all no larger than last(pre(s)) =co, we

6
If there is no such length in the hash map, we can findM−(|s|−τ+1)

for the start position and M−(|s|+ τ + 2) for the end position.
7
We can easily get last(pre(s)). To get last(pre(r)), we can materialize

it.



Algorithm 2: PivotalSearch (s, q, τ, I+, I−)

Input: s: Query; q: Gram Length; τ : Threshold;
I+: Prefix Index; I−: Pivotal Prefix Index

Output: A = {r ∈ R | ed(r, s) ≤ τ}
1 begin
2 Generate q-gram set q(s) and sort q-grams in q(s) ;
3 Generate pre(s);
4 Candidate set C = φ;
5 for each q-gram g ∈ pre(s) do
6 start =M+(|s| − τ ); end =M+(|s|+ τ + 1) − 1;
7 for i ∈ [start, end] do
8 〈r, p〉 = I+(g)[i];
9 if last(pre(r))>last(pre(s)) & |p− g.pos| ≤ τ

then Add r into C ;

10 piv(s) =PivotsSelection(pre(s));
11 for each q-gram g ∈ piv(s) do
12 start =M−(|s| − τ ); end =M−(|s|+ τ + 1)− 1;
13 for i ∈ [start, end] do
14 〈r, p〉 = I−(g)[i];
15 if last(pre(r))≤last(pre(s)) & |p− g.pos| ≤ τ

then Add r into C ;

16 for r ∈ C do
17 if Verification(s, r) then Add (s, r) to A;

18 return A;

drop all of them. Next we probe the pivotal q-grams index I−

using the prefix q-grams in pre(s). For prefix q-gram om with
position 8, we probe the index and get I−(om) = {〈r4, 8〉}.
As last(pre(r4)) =ut≤ last(pre(s)) =co, it can pass the piv-
otal prefix filter. As the position difference of the two q-
grams is 8 − 8 = 0 < τ = 2, it can pass the position filter
and we add r4 into candidate set. We process other pivotal
q-grams in the same way and finally we have three candi-
dates r3, r4 and r5. We verify them and get one result r4.

The pseudo-code of our search algorithm is shown in Al-
gorithm 2. It first generates the prefix set pre(s) (Lines 2
to 3). For each prefix q-gram g in pre(s), it gets the start
position start and end position end of strings with lengths
between |s| − τ and |s| + τ using M+ (Line 6). For each
i ∈ [start, end], it retrieves element 〈r, p〉 = I+(g)[i] (Lines 7
to 8). If last(pre(r)) >= last(pre(s)) and |p− g.pos| ≤ τ , it
takes r as a candidate (Line 9). Next it selects τ +1 pivotal
q-grams from pre(s) and generates piv(s) (Line 10). For
each pivotal q-gram g, it gets the start position start and
end position end of strings within lengths between |s| − τ
and |s| + τ using M− (Line 12). For each i ∈ [start, end],
it retrieves element 〈r, p〉 = I−(g)[i] (Lines 13 to 14). If
last(pre(r)) < last(pre(s)) and |p− g.pos| ≤ τ , it takes r as
a candidate (Line 15).
Complexity: We first analyze the space complexity. For
each string r ∈ R, we insert at most qτ + 1 prefix q-grams
into inverted index I+ and τ + 1 pivotal q-grams into in-
verted index I−, thus the space complexity is O

(

(qτ + 1 +

τ + 1)|R|
)

= O
(

qτ |R|
)

. Then we analyze the time com-
plexity. Given a query s, we need to generate and sort
the q-grams, and select the prefix. The time complexity
is O(|s| + |s| log |s| + qτ ). Then we probe the two inverted
indexes with time complexity O

(

(qτ+1)ls+(τ+1)lp
)

where

ls and lp are the average inverted-list lengths of I− and I+.

As we insert qτ + 1 q-grams in I+ and τ + 1 q-grams in I−

for each string in R, we can estimate ls = τ+1

qτ+1
lp, thus the

probing time complexity is O(2(τ + 1)lp) = O(τ lp).
There are two challenges in our PivotalSearch method.

The first one is how to select high-quality pivotal prefix. The
second challenge is how to efficiently verify the candidates.
We address these two challenges in Sections 5-6.

5. PIVOTAL q-gram SELECTION
We discuss how to select high-quality τ+1 pivotal q-grams

from the prefix q-grams. We first prove there must exist τ+1
disjoint q-grams among all the prefix q-grams (Section 5.1).
Then we discuss how to evaluate different pivotal prefixes
(Section 5.2). Finally we devise a dynamic-programming
algorithm to select the optimal pivotal prefix (Section 5.3).

5.1 Existence of Pivotal Prefix
We can prove that there must exist at least τ + 1 dis-

joint q-grams in the prefix q-grams pre(r) for any string r
as formalized in Lemma 3. The main reason is as follows.
The prefix pre(r) has a requirement that it needs at least
τ + 1 edit operations to destroy all the q-grams in pre(r).
Destroying all q-grams in pre(r) requires to apply edit oper-
ations on at least τ +1 positions where the difference of any
two positions is at least q, and using these τ + 1 positions,
we can select τ + 1 disjoint q-grams.

Lemma 3. There must exist at least τ+1 disjoint q-grams
in the prefix pre(r) for any string r.

Proof. First we consider |pre(r)| = qτ +1. A naive way
to select τ +1 disjoint q-grams first sorts the qτ +1 q-grams
by their start positions and then partitions these qτ + 1 q-
grams into τ + 1 groups based on the order. The last group
contains the last q-gram and for 1 ≤ i ≤ τ , the i-th group
contains the q-grams with orders in [1+ q · (i− 1), q · i]. The
position difference between the first q-grams in each group
is at least q and thus destroying them requires at least τ +1
edit operations. Thus we can take the first q-gram in each
group as the pivotal q-gram.

Then we consider the prefix shortened by the mismatch
filter where |pre(r)| < qτ + 1. The mismatch filter requires
at least τ + 1 edit operations to destroy all the q-grams in
pre(r). We prove the lemma by contradiction. Suppose
pre(r) contains less than τ + 1 disjoint q-grams. We first
sort the q-grams in pre(r) by their start positions and ac-
cess these q-grams in order. We select the first q-gram as a
reference q-gram. We skip all the q-grams overlapping with
the reference q-gram. As the q-grams are sorted, all such
q-grams contain the last character of the reference q-gram.
For the first q-gram that does not overlap the reference q-
gram, we select it as a new reference q-gram. We repeat
these steps until all the q-grams are accessed. On one hand,
as all the reference q-grams are disjoint, the number of ref-
erence q-grams is less than τ + 1. On the other hand, we
can apply an edit operation on the last character of each
reference q-gram to destroy all the q-grams in pre(r). Thus
we can use less than τ + 1 edit operations to destroy all the
q-grams in pre(r). This contradicts with the requirement
of the mismatch filter. Thus pre(r) contains at least τ + 1
disjoint q-grams.

5.2 Evaluating Different Pivotal Prefixes
Although our pivotal prefix filter works for any pivotal

prefixes, there may be multiple ways to select the pivotal



prefix and we want to select the best one. To this end, we
need to evaluate the quality of different pivotal prefixes.

We first discuss how to select the pivotal prefix for the
query string s. As shown in Algorithm 2, once we have com-
puted the pivotal q-grams set piv(s), we need to use them
to probe the inverted index I+ and scan the inverted lists of
q-grams in piv(s). The longer the inverted lists we scan, the
larger the filtering cost is and the smaller the pruning power
is. Thus we want to select the pivotal prefix with the mini-
mum inverted-list size. To achieve our goal, we assign each
q-gram g in pre(s) with a weight w(g) which is the length
of its corresponding inverted list in I+, i.e. w(g) = |I+(g)|.
Our objective is to select τ +1 disjoint q-grams from pre(r)
with the minimum weight. Next we formulate the optimal
pivotal q-gram selection problem as below.

Definition 2 (Optimal Pivotal Prefix Selection).
Given a q-gram prefix pre(s), the optimal pivotal q-grams s-
election problem is to select τ + 1 disjoint pivotal q-grams
from pre(s) with the minimum weight.

Example 5. Consider the query string s in Table 1. The
weights of its 5 prefix q-grams“ot,om,yo,ub,co”are 0, 2, 3, 2, 1
respectively. pre(s) has 10 subsets with τ + 1 = 3 q-grams.
Among them, there are four subsets with 3 disjoint q-grams.
Thus there are four possible pivotal prefixes: {yo,ub,co},
{ot,ub,co}, {yo,ub,om}, and {ot,ub,om} with weights 6, 3, 7
and 4 respectively. The optimal pivotal prefix is {ot,ub,co}.

Next we consider the data string r. Its pivotal q-grams
will be inserted into the index I−. Given a query, we will
probe I− using each prefix q-gram of the query. Intuitively,
if we select the low frequency prefix q-grams for the data
string as pivotal q-grams, they are less likely to appear in
the prefix of the query string, and this data string can be
pruned by the pivotal prefix filter. Thus we can use the
gram frequency as the weights of the prefix q-grams of the
data string, and our objective is still to select τ + 1 disjoint
q-grams from the prefix q-grams with the minimum weight.

Example 6. Consider the data string r3 in Table 1. The
global gram frequency is shown on the right side of the ta-
ble. The weight of its prefix q-grams “bb,ou,ut,ub,co” are
1, 3, 3, 3, 3 respectively. There are four pivotal prefixes with
3 pivotal q-grams: {ut,ub,co}, {ut,ub,ou}, {ut,bb,co}, and
{ut,bb,ou} with weights 9, 9, 7, 7 respectively. Both {ut,bb,co}
and {ut,bb,ou} are optimal pivotal q-gram prefixes.

5.3 Pivotal Prefix Selection Algorithm
To select the optimal pivotal prefix, we devise a dynamic-

programming algorithm. We first sort all the prefix q-grams
in pre(r) by their start positions in ascending order and de-
note the k-th q-gram as gk. For ease of presentation we use
W(i, j) to denote the minimum weight of selecting j dis-
joint q-grams from the first i q-grams g1, g2, · · · , gi. We use
P(i, j) to store the list of disjoint q-grams with the minimum
weight. Thus we want to compute P(|pre(r)|, τ + 1).

Initially, W(i, 1) is the minimal weight of q-grams in the
first i q-grams, i.e., W(i, 1) = min1≤k≤i w(gk) and P(i, 1) =
argmingk w(gk). Next we discuss how to calculate W(i, j).
We consider the possible j-th pivotal q-gram among the first
i q-grams, denoted by gk. As there should be i− 1 q-grams
before gk, k cannot be smaller than i. Thus k ∈ [j, i]. If we
select gk as the j-th q-gram, we need to select other j− 1 q-
grams before gk and these q-grams should not overlap with
gk. As the q-grams are sorted by positions, we only need to

Algorithm 3: OptimalSelection

Input: i: First i prefix q-grams;
j: Number of pivotal q-grams to select;

Output: 〈W(i, j),P(i, j)〉;
1 begin
2 if j = 1 then return 〈min1≤k≤iw(gk), {gk}〉;
3 if i < j then return 〈+∞, φ〉;
4 if P(i, j) 6= φ then return 〈W(i, j),P(i, j)〉;
5 for k = j to i do
6 Find max k′ < k s.t. gk′ has no overlap with gk;
7 〈W(k′, j−1),P(k′, j−1)〉 =OptimalSelection(k′,j−1);
8 if w(gk) +W(k′, j − 1) is minimum then

return 〈W(k′,j−1)+w(gk),P(k
′, j−1) ∪ {gk}〉 ;

g5=<ou,8>     g4=<co,7>     g3=<bb,4>     g2=<ub,3>   g1=<ut,1>

j=1

j=2

j=3

i=1i=2i=3i=4i=5

w(g5)=3         w(g4)=3         w(g3)=1         w(g2)=3       w(g1)=3

<+∞, ϕ >

For i=1, j=2, as i < j <+∞, ϕ >

<3,{g1}>

For  i=1, j=1 as j=1 min1≤ k≤iw(gk), gk >

k=5 k’=3     k=4 k’=3  k=3 k’=1                

k=3 k’=1 k=2 k’=1            

<4,{g1,g3}>

<7,{g1,g3,g5}>

7 7 +∞

4 6

Figure 3: A Runing Example for Optimal Pivotal
Prefix Selection.

check whether the (j − 1)-th q-gram overlaps with gk. Let
gk′ denote the (j − 1)-th q-gram that has no overlap with
gk. As there should be i − 2 q-grams before gk′ , k′ cannot
be smaller than i− 1. Thus k′ ∈ [i− 1, k]. It is worth not-
ing that with the increase of k′, W(k′, j − 1) monotonically
decreases. Thus for each q-gram gk, we only need to find its
nearest q-gram g′k that has no overlap with gk. Given k, we
can efficiently find is k′ as follows. We first sort the prefix
q-grams, we check its previous q-gram gk−1. If gk−1 has no
overlap with gk, k

′ = k− 1; otherwise we check gk−2. Itera-
tively we can find gk′ . As k−k′ is at most q, the complexity
to find k′ for each k is O(q) and the total complexity for the
qτ + 1 q-grams is O(q2τ ).

Using k and k′, we deduce the following recursion formula

W(i, j) = min
i≤k≤j

W(k′, j − 1) + w(gk). (1)

where k′ depends on k. Based on Equation 1, we can find
the i-th q-gram gk and (i− 1)-th q-gram gk′ , and P(i, j) =
P(k′, j − 1) ∪ {gk}. As the size of the matrix is O(qτ 2)
and for each j, k ∈ [i, j], the complexity of the dynamic-
programming algorithm is O(q2τ 3).

Based on the recursion function, we develop a dynamic-
programming algorithm OptimalSelection to find the opti-
mal pivotal prefix. The pseudo-code is shown in Algorith-
m 3. The OptimalSelection algorithm takes as input i and
j, which denote selecting j pivotal q-grams from the first
i sorted prefix q-grams g1, g2, · · · , gi, and outputs W(i, j)
and P(i, j). If j = 1, it returns the minimum weight of the
first i q-grams, and the corresponding q-gram with the min-



imum weight (Line 2). If i < j, as it cannot select j pivotal
q-grams from i < j prefix q-grams, the algorithm returns
a maximum weight and an empty set (Line 3). If the two
values W(i, j) and P(i, j) have already been computed, it
directly returns them (Line 4). Next it selects k, k′ with
minimum W(k′, j − 1) + w(gk) (Line 5 to 8). Finally, it re-
turns 〈W(k′, j− 1)+w(gk),P(k

′, j− 1)∪{gk}(Line 8). The
time complexity is O(q2τ 3).

Example 7. Consider the query string s and data string
r3 in Table 1. We cannot prune r3 as last(pre(r3)) = co ≤
last(pre(s)) = co and piv(r3) ∩ pre(s) = {ub}. However
we can use the OptimalSelection function to select the opti-
mal pivotal q-grams. For q(r3), we sort its q-grams by their
positions and get g1 = 〈ut, 1〉, g2 = 〈ub, 3〉, g3 = 〈bb, 4〉,
g4 = 〈co, 7〉 and g5 = 〈uu, 8〉 with weights 3, 3, 1, 3 and 3
respectively as shown in Figure 3. Next we call algorithm
OptimalSelection(5, 3), which selects k from 3, 4, 5 such that
W(k′, 2) + w(gk) is minimum where k′ equals to 3, 3, 1 re-
spectively. For k = 3, as k′ = 1 < 2, W(k′, 2) = +∞. We
recursively call OptimalSelection(3, 2) to calculate W(3, 2).
In this round, we select k from 3 and 2 and the correspond-
ing k′ are both 1 and calculate W(1, 1). As j = 1 we return
W(1, 1) = 3 and P(1, 1) = {g1}. We find k = 3 achieves
minimal value W(1, 1) +w(g3) = 4, and return W(3, 2) = 4
and P(3, 2) = {g1, g3}. Finally we get W(5, 3) = 7 and
P(5, 3) = {g1, g3, g5}. Thus we have piv(r3) = {bb,ou,ut}.
As piv(r3) ∩ pre(s) = φ, we can prune r3.

6. ALIGNMENT FILTER ON PIVOTAL Q-

GRAMS
The pivotal prefix filter is effective to prune the dissim-

ilar strings with non-consecutive errors to the query since
τ non-consecutive errors may exactly destroy qτ q-grams.
However it is not effective for consecutive errors, because τ
consecutive errors may only destroy τ+q−1 q-grams, which
is much smaller than qτ , and thus the pivotal prefix filter
may involve many false positives. For example, consider the
string r5 and the query s in Table 1. The 2 consecutive er-
rors on ‘om’ of s only destroy 3 q-grams in r5 and we find
the pivotal prefix filter cannot prune this dissimilar string.
To address this problem, we propose an alignment filter to
detect the consecutive errors.
Transformation Alignment. The pivotal prefix filter has
two cases to generate candidates: (1) pre(r) ∩ piv(s) 6= φ;
or (2) pre(s) ∩ piv(r) 6= φ. In any case there is a pivotal q-
gram of a string matching a prefix q-gram of another string.
Without loss of generality, we suppose a pivotal q-gram of s
matching a prefix q-gram of r. In any transformation from s
to r with ed(s, r) edit operations, each pivotal q-gram of s,
e.g., the i-th pivotal q-gram pivi(s), will be transformed to
a substring of r, e.g., subi(r). We call pivi(s) is aligned to
subi(r). As the τ+1 pivotal q-grams are disjoint, these τ+1
substrings are also disjoint(subi(r) may be empty). Suppose
erri = ed(pivi(s), subi(r)). For any transformation from s

to r with ed(s, r) operations, we have
∑τ+1

i=1
erri ≤ ed(s, r)

as stated in Lemma 4. Figure 4 illustrates the basic idea.
Lemma 4. For any transformation from s to r with ed(s, r)

operations, we have
∑τ+1

i=1
erri ≤ ed(s, r).

Proof. On one hand, we have the edit operations on the
τ + 1 disjoint pivotal q-grams all belong to the ed(s, r) edit
operations in the transformation. On the other hand, the
number of edit operations on each pivotal q-gram cannot be
smaller than erri. Thus we have

∑τ+1

i=1
erri ≤ ed(s, r).

Based on Lemma 4, if
∑τ+1

i=1
erri > τ , s and r cannot be

similar. As there may be many transformations from s to
r with ed(s, r) operations, it is rather expensive to enumer-
ate every transformation to compute erri and check whether
∑τ+1

i=1
erri > τ . To address this issue, we find that for

any transformation, erri = ed(pivi(s), subi(r)) is not larger
than the minimum edit distance between the pivotal q-gram
pivi(s) and any substring of r, denoted by sed(pivi(s), r),
which is called substring edit distance between pivi(s) and
r [18]. Thus we have erri = ed(pivi(s), subi(r)) ≥ sed(pivi(s), r)

and
∑τ+1

i=1
sed(pivi(s), r) ≤

∑τ+1

i=1
erri.

The substring edit distance between g = pivi(s) and r,
i.e., sed(g, r), can be computed using a dynamic-programming
algorithm [18]. We use a matrixM with |g|+1 = q+1 rows
and |r| + 1 columns to compute sed(g, r), where M[i][j] is
the edit distance between the prefix of g with length i and
some substrings of r ending with r[j]. Thus the substring
edit distance between g and r is

sed(g, r) = min1≤i≤|r|+1M[i][|g|+ 1].

To compute M[i][j], we first initialize M(0, j) = 0 for
1 ≤ j ≤ |r|+ 1 andM(i, 0) = i for 1 ≤ i ≤ q + 1. Then we
computeM[i][j] using the following recursive function

M(i, j) =















M(i− 1, j − 1) g[i] = r[j]

min







M(i− 1, j) + 1
M(i, j − 1) + 1
M(i− 1, j − 1) + 1

g[i] 6= r[j]

The complexity of computing the substring edit distance
is O(q|r|), and thus the filter cost is very high. To further
improve the performance, we have an observation that, a
pivotal q-gram g = pivi(s) cannot be aligned to some sub-
strings of r. More specifically, based on the position filter,
if s and r are similar, g can only be aligned to a substring
in of r between positions g.pos − τ and g.pos + q − 1 + τ ],
denoted by r[g.pos− τ, g.pos+ q − 1 + τ ] (If g.pos− τ < 1,
we set the begin position as 1. If g.pos+ q− 1 + τ > |r|, we
set the end position as |r|.)

Accordingly we only need to compute the substring ed-
it distance between g and r[g.pos − τ, g.pos + q − 1 + τ ]8,
and the complexity is O

(

q(q + 2τ )
)

= O(q2 + qτ ). More-
over, we have if |j − i| > τ , M(i, j) > τ and we can skip
these entries in the dynamic-programming algorithm, i.e.
we only compute the entry M(i, j) where 1 ≤ i ≤ |q| + 1
and i − τ ≤ j ≤ i + τ . Thus the time complexity de-
creases to O(qτ ) and the total time complexity to compute
∑τ+1

i=1
sed(pivi(s), r[pivi(s).pos− τ, pivi(s).pos+ q− 1+ τ ])

is O(qτ 2). This is much smaller than directly computing
ed(r, s) with time cost O(min(|r|, |s|) ∗ τ ) as min(|r|, |s|) is
much larger than q.

Based on this observation, we design an alignment filter.
Alignment Filter. For any two strings r and s with a
matching pivotal q-gram, if

∑τ+1

i=1
sed(pivi(s), r[pivi(s).pos−

τ, pivi(s).pos+ q− 1+ τ ]) > τ , r and s cannot be similar as
formalized in Lemma 5.

Lemma 5 (Alignment Filter). For any two strings r
and s, if r and s are similar, we have
∑τ+1

i=1
sed(pivi(s), r[pivi(s).pos−τ, pivi(s).pos+q−1+τ ]) ≤

τ.Proof. Based on Lemma 4 and the length filter, the lem-
ma is easy to prove.

8
Li et. al. [15] proposed some techniques to further reduce the sub-

string range. Their techniques are orthogonal to ours and can be
integrated into our method.
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Figure 4: The Alignment Filter.
∑τ+1

i=1
erri ≤ ed(s, r).

Algorithm 4: Verification

Input: s: Query string; r: Data string; q: Qram length;
piv(s): Pivotal q-grams of s; τ : Threshold;

1 begin
2 errors = 0;
3 for each q-gram g ∈ piv(s) do
4 errors+=sed(g, r[g.pos− τ, g.pos+ q− 1+ τ ], τ );
5 if errors > τ then return false;

6 if ed(r, s) ≤ τ then return true ;
7 else return false ;

Verification Algorithm. Next we incorporate the align-
ment filter into our framework and propose the verifica-
tion algorithm as shown in Algorithm 4. For any data string
r and a query string s with a matching pivotal q-gram g,
we first perform the alignment filter by checking whether
∑τ+1

i=1
sed(pivi(s), r[pivi(s).pos−τ, pivi(s).pos+q−1+τ ]) >

τ . If yes, the pair will be pruned by the filter; otherwise
we verify it by calculating their real edit distance using the
dynamic-programming algorithm.

For example, consider the record r5 and query string s
in Table 1. As last(pre(r5)) ≤ last(pre(s)) and piv(r5) ∩
pre(s) = yo, r5 is a candidate and we use Algorithm 4 to
verify it. For each of the three pivotal q-grams, we calculate
their substring edit distance sed(ot, r5[2− 2, 2+2− 1+2] =
yoytu) = 1, sed(om, r5[8 − 2, 8 + 2 − 1 + 2] = beca) = 2.
As the total number of errors (3) is already larger than the
threshold (2), we can prune r5.
Comparison with Content Filter. ED-Join [24] proposed
a content-based mismatch filter to detect the consecutive er-
rors. Its time complexity isO(τ |Σ|+l) where Σ is the symbol
table for the dataset and l is the string length. Obviously
the complexity of content filter is too high while our align-
ment filter has a low time complexity of O(qτ 2), which is
independent of the string length and symbol table size.

7. SUPPORTING DYNAMIC THRESHOLDS
In this section we discuss how to support dynamic edit-

distance thresholds. Along the same line as existing works
Qchunk, AdaptJoin, Flamingo and B

ed
tree, we also assume

there is a maximum edit-distance threshold τ̂ for the query.
This is because, if |s| − q + 1 − qτ ≤ 0, all strings will
be taken as a candidate in the q-gram-based methods. To
make q-gram-based method have pruning power, the thresh-

old cannot exceed ⌊ |s|−q

q
⌋. A naive way to support dynamic

edit-distance thresholds is to build τ̂ +1 indexes for thresh-
old τ ∈ [0, τ̂ ]. For each query with a threshold τ , we use
the corresponding index to answer the query. However this
method involves large space overhead. To address this issue,
we build incremental indexes I+τ and I−τ for each 0 ≤ τ ≤ τ̂ .

Indexing. Consider a dataset R and a maximum edit-
distance threshold τ̂ . We first split the strings into q-grams
and get a universal order. For each string r ∈ R, we sort

s: yotubecom
pre(s): {ot, om, yo, ub, co}

piv(s): {ot, ub, co} I = ϕ, i=0,1,2

<r4, r5>

r4
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ou

ut
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Figure 5: An Example Incremental Index.
its q-grams based on the universal oder. We access the q-
grams in order and select the maximum q-gram such that
destroying the q-gram requires at least one edit operation,
denoted by g0. Obviously g0 is the first q-gram in q(r). Nex-
t we select the maximal q-gram g1 such that destroying all
q-grams before g1 (including g1) requires at least two edit
operations. Similarly, we generate g2, · · · , gτ̂

9. Obviously
{g1, g2, · · · , gi} is a pivotal prefix of r for threshold i and
the set of q-grams before gi is a prefix set of r for threshold
i. We insert gi into I−i and the q-grams between gi−1 and
gi (including gi and excluding gi−1) into I

+

i for 1 ≤ i ≤ τ̂ .10

Example 8. Consider the data strings in Table 1. Sup-
pose the maximum edit distance threshold is τ̂ = 3. We
build four incremental indexes as shown in Figure 5. We
take r4 as an example. First we get q(r4) = {〈tb, 4〉, 〈om, 8〉,
〈yo, 1〉, 〈ou, 2〉, 〈ut, 3〉, 〈co, 7〉,〈be, 5〉, 〈ec, 6〉}. We have
g0 = tb, g1 = om, g2 = yo, g3 = ut. Especially, g3 = ut be-
cause destroying the q-grams before g3 requires at most 4 edit
operations and destroying the q-grams before the previous q-
gram of g3 (i.e., ou) requires at most 3 edit operations. Then
we insert tb, om, yo, ut respectively into I−0 , I−1 , I−2 , I−3 , and
{tb}, {om}, {yo}, {ou, ut} respectively into I+0 , I+1 , I+2 , I+3 .
Search Algorithm. The search algorithm is the same as
that in Section 4, except that (1) To select the optimal piv-
otal prefix, for each q-gram g in the query string s, its token
weight is

∑τ

i=0
|I+i (g)|; and (2) For each q-gram in prefix

pre(s) we use indexes I−i and for each q-gram in pivotal
prefix piv(s) we use indexes I+i for 0 ≤ i ≤ τ . For example,
consider the query string s in Table 1 with threshold τ = 2.
We compute pre(s) and piv(s) as shown in Figure 5. The
weights of the five prefix q-grams in pre(s) are 0, 1, 2, 0, 0 re-
spectively. We probe the incremental inverted indexes and
get two candidates r4 and r5. The alignment filter can prune
the candidate r5 and finally we get one result r5.

8. EXPERIMENT
We conducted experiments to evaluate the performance

and scalability of our method. We compared with four
state-of-the-art studies, Flamingo, AdaptJoin, Qchunk and
B
ed
tree. We obtained the source codes of AdaptJoin and

B
ed
tree from the authors, downloaded the source code of

Flamingo from “Flamingo” project homepage11 and imple-
9
ED-Join [24] proposed a solution to get the maximum q-gram gi which

which requires at least i + 1 edit operations to destroy all q-grams
before gi

10
We also insert g0 into I+

0
.

11
http://flamingo.ics.uci.edu/

http://flamingo.ics.uci.edu/


Table 4: Datasets.
Datasets Cardinality Avg Len Max Len Min Len
Title 4,000,000 100.6 386 54
Title Query 4,000 100.08 307 54
DNA 2,476,276 108.0 108 108
DNA Query 2,400 100.08 108 108
URL 1,000,000 28.03 193 20
URL Query 1,000 28.07 68 20

mented Qchunk by ourselves. All the algorithms were im-
plemented in C++ and compiled using g++ 4.8.2 with -O3
flags. All the experiments were conducted on a machine
running on 64bit Ubuntu Server 12.04 LTS version with an
Intel Xeon E5-2650 2.00GHz processor and 16GB memory.
Datasets: We used three real datasets PubMed Title12,
DNA13, and URL14 in the experiments. The PubMed Ti-

tle dataset is a medical publication title dataset. We se-
lected 4,000,000 titles in the dataset and randomly chose
4,000 titles as query strings. The DNA dataset contained
2,476,276 DNA reads and we randomly selected 2400 reads
as query strings. The URL dataset is a set of hyperlinks.
We used 1,000,000 entries as dataset and 1000 entries as
query strings. The details of the dataset are shown in Ta-
ble 4. We tuned the parameter q to achieve the best per-
formance and in the experiments we used q = 8, 8, 6, 6, 4, 4
for τ = 2, 4, 6, 8, 10, 12 on the PubMed Title dataset, q =
12, 12, 12, 10, 9, 8 for τ = 2, 4, 6, 8, 10, 12 on the DNA dataset,
and q = 6, 3, 3, 2, 2 for τ = 1, 2, 3, 4, 5 on the URL dataset
for all algorithms.

8.1 Evaluation on the pivotal q-gram techniques
In this section, we evaluated the effectiveness and efficien-

cy of our proposed filters and the optimal pivotal q-gram
selection techniques. We implemented five methods. (1)
CrossFilter only utilized the cross prefix filter (based on
Lemma 1). (2) PivotalFilter only adopted the pivotal
prefix filter (based on Lemma 2). (3) CrossSelect utilized
the cross prefix filter and the optimal selection algorithm
to select the pivotal q-grams. (4) PivotalSelect used the
pivotal prefix filter and the optimal selection algorithm to s-
elect pivotal q-grams. (5) Mismatch was the state-of-the-art
mismatch filter [24]. In the verification step, we used the
dynamic programming algorithm (with the optimization of
verifying τ + 1 cells in each row [15]) to verify candidates
for all of these methods. We tested their candidate numbers
and average search time on the three datasets. The results
are shown in Figures 6-7.

From Figure 6, we can see CrossFilter was better than
Mismatch. CrossSelect had smaller numbers of candidates
than CrossFilter. PivotalFilter and PivotalSelect fur-
ther reduced the candidate numbers. For example, on the
DNA dataset under the edit-distance threshold τ = 8, Mis-
match had 9 million candidates while CrossFilter only had
3 million candidates. CrossSelect further reduced the can-
didate number to 2 million. PivotalSelect had the mini-
mum number of candidates, 1 million. This is because the
optimal pivotal q-gram selection technique selected the piv-
otal q-grams with the minimum inverted-list sizes and thus
reduced candidate numbers, and the cross prefix filter and
the pivotal prefix filter removed unnecessary q-grams from
the prefix and thus reduced the candidate number. By com-

12
http://www.ncbi.nlm.nih.gov/pubmed

13
http://www.ncbi.nlm.nih.gov/genome

14
http://www.sogou.com/labs/dl/t-rank.html

bining them together, PivotalSelect further reduced the
candidate number.

We also tested the average search time of the five method-
s. Figure 7 shows the results. We can see CrossFilter had
smaller average search time than Mismatch while CrossSe-

lect and PivotalFilter outperformed CrossFilter. Piv-

otalSelect achieved the best performance. For example,
on the PubMed Title dataset with edit-distance threshold
τ = 12, the average search time for Mismatch and CrossFil-

ter were 82.5 milliseconds and 60 milliseconds, while the av-
erage search time for CrossSelect and PivotalFilter were
45 milliseconds and 50 milliseconds. PivotalSelect further
reduced the average search time to 25 milliseconds. This is
because PivotalSelect not only reduced large numbers of
candidates but also improved the filtering cost.

8.2 Evaluation on the alignment filter
In this section we evaluated the alignment filter and com-

pared with content filter [24]. We implemented three meth-
ods: (1) NoFilter utilized the dynamic programming algo-
rithm to verify candidates as discussed in Section 8.1, (2)
AlignFilter first used the alignment filter and then uti-
lized the NoFilter algorithm to verify candidates, (3) Con-
tentFilter first used the content filter and then utilized
the NoFilter algorithm to verify candidates. We used Piv-

otalSelect to generate candidates. We compared them on
candidate numbers and average verification time. Figures 8-
9 show the results.

The Real bar in Figure 8 indicates the number of answer-
s. Compared with NoFilter, ContentFilter reduced the
number of candidates by 1-2 orders of magnitude. More-
over, AlignFilter significantly outperformed ContentFil-

ter by 2-4 orders of magnitude and the candidate number
of AlignFilter was close to the number of real results. For
example, on the PubMed Title dataset with edit-distance
threshold τ = 12, NoFilter had 54 million candidates and
ContentFilter had 3 million candidates. AlignFilter fur-
ther reduced the number to 5,500 which is very close to the
number of real answers 4,400. This is because the alignmen-
t filter can effectively detect the consecutive edit errors on
the low-frequency pivotal q-grams to prune large numbers
of dissimilar strings, while ContentFilter only considered
the difference of the number of characters appeared between
query and candidate strings.

We compared the average verification time and Figure 9
shows the result. We can see from the figure that AlignFil-
ter outperformed NoFilter by 2-4 times and ContentFil-

ter by 1-2 times. For example, on the DNA dataset with
edit-distance threshold τ = 12, AlignFilter took 10 mil-
liseconds while NoFilter took 72 milliseconds and Content-

Filter took 40 milliseconds. This is because the alignment
filter detected the errors on the mismatched pivotal q-gram
instead of the whole strings which saved a lot of verification
time, while ContentFilter scanned the whole strings.

8.3 Comparison of state-of-the-art methods
In this section, we compared our method PivotalSearch

(which utilized the PivotalSelect algorithm in the filter-
ing step and the AlignFilter algorithm in the verification
step) with state-of-the-art methods Qchunk, Flamingo, and
AdaptJoin on the three datasets. We evaluated the average
search time and candidate numbers. The results are shown
in Figure 10. Each bar denotes the average search time, in-
cluding the filtering time (the lower bar) that contained the

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/genome
http://www.sogou.com/labs/dl/t-rank.html
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Figure 6: Candidate Number: Evaluating Pivotal Prefix Filter and Optimal Pivotal q-gram Selection.
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Figure 7: Efficiency: Evaluating Pivotal Prefix Filter and Optimal Pivotal q-gram Selection.
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Figure 8: Candidate Number: Evaluating Alignment Filter.
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Figure 9: Efficiency: Evaluating Alignment Filter.

time for all filters (e.g., PivotalFilter and AlignFilter for
our method) and verification time (the upper bar) that only
contained the time for computing real edit distance. The
numbers on top of the bars denote the candidate numbers.
For average search time, PivotalSearch achieved the best
performance on all datasets, and outperformed existing al-
gorithms by 2-10 times. For example on the URL dataset
with edit-distance threshold τ = 5, the average search time
for AdaptJoin, Qchunk, Flamingo and PivotalSearch were
215 milliseconds, 256 milliseconds, 671 milliseconds and 82
milliseconds respectively. This is because our pivotal prefix
filter reduced the number of q-grams, the optimal pivotal q-
gram selection algorithm selected high-quality q-grams and
the alignment filter detected consecutive edit errors.

For the filtering step, our method still achieved the best
performance. For example, on the DNA dataset with edit-
distance threshold τ = 12, the average filtering time of Piv-
otalSearch, AdaptJoin, Flamingo and Qchunk were 25 mil-
liseconds, 30 milliseconds, 135 milliseconds, and 80 millisec-

onds respectively. This is because the filtering cost of Piv-
otalSearch is smaller than existing methods as explained
in Table 3. For the verification step, our method also out-
performed existing ones (discussed in Section 8.2).

For the candidate numbers, PivotalSearch always gen-
erated the least number of candidates, which is 1-2 orders
of magnitudes less than other methods. For example, In
the URL dataset with edit-distance threshold τ = 3, our
PivotalSearch method generated 110 thousand candidates
while AdaptJoin, Flamingo, and Qchunk generated 12 mil-
lion, 31 million, and 50 million candidates. This is because
our pivotal prefix filter and alignment filter are extremely
effective for non-consecutive errors and consecutive errors
which can filter most of dissimilar strings.

We also compared the index sizes. For example, on the
PubMed Title dataset under threshold τ = 10(q = 6), the in-
dex sizes for Qchunk, AdaptJoin, Flamingo and PivotalSearch

were respectively 310MB, 260MB, 400MB, 224MB.
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Figure 10: Comparison with State-of-the-art Studies (Numbers on top of each bar are candidate numbers).
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Figure 11: Scalability.

8.4 Scalability
In this section we evaluated the scalability of our method.

We used the same queries and varied the dataset sizes. The
results are shown in Figure 11. We can see that our method
scaled very well on the three datasets. For example, on the
PubMed Title dataset with edit-distance threshold τ = 10,
we varied the dataset sizes from 1 million to 5 million. The
search time were respectively 1 milliseconds, 2.3 millisec-
onds, 3.5 milliseconds, 4.8 milliseconds, and 6 milliseconds.
This is also attributed our effective filters which can prune
more dissimilar strings on larger datasets.

9. CONCLUSION
We studied the string similarity search problem with edit-

distance thresholds. We proposed a pivotal prefix filter
which can significantly reduce the number of signatures. We
proved that the pivotal prefix filter outperforms state-of-the-
art filters. We devised a dynamic-programming algorithm
to select the optimal pivotal prefix. To detect the consecu-
tive errors, we proposed an alignment filter to prune large
numbers of dissimilar strings with consecutive errors. Ex-
perimental results on real datasets show our method signif-
icantly outperformed state-of-the-art studies.
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