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ABSTRACT
Data analysts in industries spend more than 80% of time on
data cleaning and integration in the whole process of data
analytics due to data errors and inconsistencies. It calls for
effective query processing techniques to tolerate the errors
and inconsistencies. In this paper, we develop a distributed
in-memory similarity-based query processing system called
Dima. Dima supports two core similarity-based query opera-
tions, i.e., similarity search and similarity join. Dima extends
the SQL programming interface for users to easily invoke
these two operations in their data analysis jobs. To avoid
expensive data transformation in a distributed environment,
we design selectable signatures where two records approxi-
mately match if they share common signatures. More im-
portantly, we can adaptively select the signatures to balance
the workload. Dima builds signature-based global indexes
and local indexes to support efficient similarity search and
join. Since Spark is one of the widely adopted distributed in-
memory computing systems, we have seamlessly integrated
Dima into Spark and developed effective query optimization
techniques in Spark. To the best of our knowledge, this is
the first full-fledged distributed in-memory system that can
support similarity-based query processing. We demonstrate
our system in several scenarios, including entity matching,
web table integration and query recommendation.

1. INTRODUCTION
In big data era, data are full of errors and inconsisten-

cies and create many troubles in data analysis. As reported
in a New York Times article, 80% of a typical data science
project is cleaning and preparing the data, while the remain-
ing 20% is actual data analysis1. Therefore, it is demanding
to have efficient and effective query processing techniques to
serve the data cleaning job, and some similarity-based algo-
rithms [5, 2, 11, 1, 9, 7, 4, 6, 8, 10, 3] have been proposed.
However, they suffer from several limitations. Firstly, they

1http://www.nytimes.com/2014/08/18/technology/for-big-
data-scientists-hurdle-to-insights-is-janitor-work.html
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are not full-fledged and cannot support complex data analy-
sis, e.g. SQL-based analysis. Secondly, the algorithms either
cannot support large-scale data analysis or have workload
unbalance problem.

To address these limitations, we develop a distributed
in-memory system Dima that can utilize SQL to support
similarity-based query processing. In this paper we focus
on two core operations, i.e., similarity search and similar-
ity join. Similarity search extends traditional exact search
by tolerating errors and similarity join extends traditional
exact join by tolerating errors between records. Regard-
ing the similarity metrics adopted in search and join, we
focus on two widely adopted ones: set-based similarity and
character-based similarity [5]. A big challenge in distributed
computing is to avoid expensive data transmission. An ef-
fective way is to judiciously assign data into different par-
titions such that the results must be in the same partition
(and avoid the Cartesian product over different partitions).
To achieve this goal, we propose effective signatures where
two records approximately match if they share common sig-
natures. Using signatures, we build global indexes and local
indexes to support similarity search and join. Another chal-
lenge is to balance the workload among partitions. To this
end, we propose the concept of selectable signatures, which
are adaptively selectable based on the workload. Based on
selectable signatures and effective indexes, we devise efficient
algorithms to support similarity-based query processing. We
seamlessly integrate Dima into Spark SQL by developing ef-
fective query optimization techniques on top of Spark SQL.

We demonstrate our system in three scenarios and all
VLDB attendees working on big data integration and anal-
ysis will be interested in our demo.
Entity Matching. Given two sets of objects, our system
can be used to identify the pairs of objects that refer to
the same entity. For example, we want to find the products
from Amazon and eBay that refer to the same entity. We
also want to find the publications from DBLP and Google
scholar that refer to the same entity.
Web Table Integration. Web tables contain a large amount
of high-quality relational information and a recent Google
study extracted 14 billion raw HTML tables and estimated
that 150 million among these are relational tables. These
Web tables, if properly integrated, can benefit numerous
pragmatic applications such as searching structured data,
data discovery and data transformation. Our system can be
used to integrate web tables.
Query Recommendation. Users may not type search
queries correctly, and thus search engines, e.g., Google, rec-
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ommend relevant queries based on query logs. Our system
can be used to recommend query logs similar to the query.

Our system is available at http://dbgroup.cs.tsinghua.
edu.cn/ligl/dima/ and our source code is publicized at
https://github.com/TsinghuaDatabaseGroup/dima.

2. SIMILARITY-BASED QUERY PROCESS-
ING FRAMEWORK

2.1 Similarity-Based Query Operations
Given two records r and s, we use a similarity function

to compute their similarity and we focus on two types of
similarities.

Set-Based Similarity. It tokenizes records as sets of to-
kens and computes the similarity based on the sets, e.g., Jac-
card, Cosine, DICE. Two records are similar w.r.t. Jaccard
if their Jaccard similarity is not smaller than a threshold
τ . For example, the Jaccard similarity between {SIGMOD,
2017, NC} and {SIGMOD, 2016, CA} is 1/5.

Character-Based Similarity. It transforms a record to
another based on character transformations and computes
the similarity by the number of character transformations.
The well-known character-based similarity is edit distance,
which transforms a record to another by three atomic op-
erations, deletion, insertion and substitution, and takes the
minimum number of edit operations as the edit distance.
Two records are similar w.r.t. edit distance if their edit dis-
tance is not larger than a threshold τ . For example, the edit
distance between SIGMOD and SIGMD is 1.

Next we formally define two similarity operations based
on the similarity functions.

Definition 1 (Similarity Search). Given a collection
of records R, a query s, a similarity function f and a thresh-
old τ , the similarity search problem aims to find all similar
records from the set, i.e., {r ∈ R|f(r, s, τ) = true}. For Jac-
card, f(r, s, τ) = true iff. Jac(r, s) ≥ τ ; For edit distance,
f(r, s, τ) = true iff. ED(r, s) ≤ τ .

Definition 2 (Similarity Join). Given two collections
of records R and S, the similarity join problem aims to find
all similar record pairs from the two sets, i.e., {(r, s)|r ∈
R & s ∈ S & f(r, s, τ) = true}.

Our goal is to to support these two operations in dis-
tributed in-memory systems.

2.2 Our Framework
Extended SQL. We extend SQL and define simSQL by
adding two operations to support similarity search and join.
We use Sim(f, τ) to support similarity-based query process-
ing using function f and threshold τ and the two operations
are defined as below.

(1) Similarity Search. Users utilize the following simSQL

query to find records in table T whose S column is similar
to query q w.r.t. similarity function f and threshold τ .

SELECT * from FROM T WHERE q Sim(f, τ) T.S
(2) Similarity Join. Users utilize the following simSQL query
to find the records in tables T1 and T2 where table T1’s S
column is similar to table T2’s R column w.r.t. similarity
function f and threshold τ .

SELECT * from FROM T1, T2 WHERE T1.S Sim(f, τ) T2.R

RDBMS HDFS Native RDD

Spark

Local IndexingGlobal Indexing

Similarity-based Query Optimizer

simSQL Parser DataFrame API

CLI JDBC Scala Program

Similarity-based Query Operations 

Figure 1: The Framework of Dima.

DataFrame. In addition to simSQL, users can also perform
special operations over DataFrame objects using a domain-
specific language similar to data frames in R. We also extend
Spark’s DataFrame API to support similarity search and
join similar to the aforementioned extended simSQL.

Index. Users can also create index to support similarity
search and join. Our system supports both gloabl indexes
and local indexes. Users can utilize the following simSQL

query to create a local index on the column S of table T
using the SEGINDEX, which will be introduced in Section 3.1.
CREATE LOCAL Index GlobalIndex ON T.S USE SEGINDEX.

Users can also build a global index using the following simSQL.
CREATE GLOBAL Index LocalIndex ON T.S USE SEGINDEX.

Similarity-based Query Processing. We utilize the above
signature-based index to process similarity search and join
query. For search, we utilize the global index to prune ir-
relevant partitions and send the query request to relevant
partitions. In each local partition, we utilize the local index
to compute the local results. For join query, we utilize the
global index to make the similar pairs in the same partition
and this can avoid expensive data transmission. In each par-
tition, we utilize local index to compute local answers. The
details are discussed in Sections 3.2.

Query Optimization. Dima extends the Catalyst opti-
mizer of Spark SQL and introduces a cost-based optimiza-
tion (CBO) module to optimize the approximation queries.
The CBO module leverages the (global and local) index to
optimize complex simSQL queries. Query optimization in
Dima is discussed in Section 3.3.

Dima Workflow. Figure 1 shows the architecture of our
Dima framework. Next we give the query processing work-
flow of Dima. Given a simSQL query or a DataFrame object,
Dima first constructs a tree model by the simSQL parser or a
DataFrame object by the DataFrame API. Then Dima builds
a logical plan using Catalyst rules. Next, the logical opti-
mizer applies standard rule-based optimization to optimize
the logical plan. Based on the logical plan, Dima applies
cost-based optimizations based on signature-based indexes
and statistics to generate the most efficient physical plan.
Dima supports analytical jobs on various data sources such
as CVS, JSON and Parquet.
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3. DIMA SYSTEM

3.1 Indexing

3.1.1 Selectable Signatures
Basic Idea. Given a data record r and a query record s, we
generate two types of indexing signature set for r, iSig+ and
iSig−, and two types of probing signature set for s, pSig+

and pSig−. If iSig+∩pSig+ = φ, we can deduce that r and
s have at least 1 mismatched token (or character). If iSig+∩
pSig+ = φ & iSig+ ∩ pSig− = φ & iSig− ∩ pSig+ = φ, we
can deduce that r and s have at least 2 mismatched tokens
(characters). We can utilize either of the two properties to
do pruning and thus we can select a better way to reduce
the cost. Moreover in distributed computing, we can select
a better way to balance the workload. Next we take Jaccard
as an example to define the signatures and interested readers
can refer to [4, 6] for more details for edit distanece.

Indexing Signatures. Given a record r, we generate two
types of indexing signatures: indexing segment signatures
and indexing deletion signatures.

Indexing Segment Signatures. We partition record r into
η|r| disjoint segments seg1, seg2, · · · , segη|r| . iSig+r,i,|r| =

(segi, i, |r|) is an indexing segment signature for 1 ≤ i ≤ η|r|.
We will introduce how to compute the number of segments
η|r| later. Let iSig+r = ∪η|r|i=1{iSig

+
r,i,|r|} denote the indexing

segment signature set of r.

Indexing Deletion Signatures. For each segment signature
iSig+r,i,|r| = (segi, i, |r|), we generate an indexing deletion

signature iSig−r,i,|r|,k = (delki , i, |r|) where delki is a subset

of segi by deleting the k-th token (1 ≤ k ≤ |segi|). Let

iSig−r,i,|r| = ∪|segi|k=1 {iSig
−
r,i,|r|,k} denote the set of deletion

signatures for the i-th segment. Let iSig−r = ∪η|r|i=1iSig
−
r,i,|r|

denote the indexing deletion signature set of r.

Number of Segments η|r|. If Jac(r, s) ≥ τ , we have 1 −
|r∩s|
|r∪s| ≤ 1 − τ . Thus |r ∪ s − r ∩ s| ≤ |r ∪ s|(1 − τ) ≤
(1− τ) |r∩s|

τ
≤ 1−τ

τ
|r|. That is for any set s, if s is similar to

r, it has at most b 1−τ
τ
|r|c mismatched tokens with r. Thus

if we partition r into η|r| = b 1−τ
τ
|r|c + 1 segments, s must

share a segment with r if s is similar to r. Note in the
partition, we must keep a global order for the tokens, and
the same token in different records must be assigned into
the same segment. Thus we can keep a hash function Γ that
maps a token t to the i-th segment, i.e., Γ(t) = i.

Probing Signatures. Given a record s, if it is similar to
record r, the length difference between s and r should not be
too large. In other words, s can only be similar to a record
r whose length |r| ranges in [l−|s|, l

+
|s|]. Since |r| ≥ |r ∩ s| ≥

|r ∪ s| · τ ≥ |s| · τ , we have l−|s| = d|s| · τe. Similarly, since

|r| ≤ |r∪s| ≤ |r∩s|
τ
≤ |s|

τ
, we have l+|s| = b |s|

τ
c. As the records

with different lengths have different segment strategies, we
should consider every length l ∈ [l−|s|, l

+
|s|].

Probing Segment Signatures for Length l. As the record with
length l is partitioned into ηl segments, we also partition s
into ηl segments seg1, seg2, · · · , segηl (using the same global
order, e.g. the same hash function Γ). For each i ∈ [1, ηl], we
generate a probing segment signature pSig+s,i,l = (segi, i, l).
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Figure 2: Indexing Structure.

Let pSig+s,l = ∪η|r|i=1{pSig
+
s,i,l} denote the probing segment

signature set of s for length l.

Probing Deletion Signatures for Length l. For each probing
segment signature pSig+s,i,l = (segi, i, l), we generate a dele-

tion signature pSig−s,i,l,k = (delki , i, l) where delki is a subset
of sigi by deleting the k-th token. Then we can get a prob-
ing deletion signature set pSig−s,i,l = ∪ηlk=1{pSig

−
s,i,l,k}. Let

pSig−s,l = ∪ηli=1pSig
−
s,i,l denote the probing deletion signa-

ture set of s for length l.

Pruning Condition. Consider r and s. If r and s, they
cannot have two many mismatched tokens. Next we discuss
how to compute the bound of mismatched tokens. |r ∪ s −
r ∩ s| = |r| + |s| − 2|r ∩ s| ≤ |r| + |s| − 2 τ

1+τ
(|r| + |s|) =

1−τ
1+τ

(|r| + |s|). Thereby, if r and s are similar, they should

have at most 1−τ
1+τ

(|r|+ |s|) mismatched tokens. Let θ|s|,|r| =

b 1−τ
1+τ

(|r| + |s|)c + 1 denote the dissimilar token threshold,
i.e., if r and s have more than θ|s|,|r| mismatched tokens,
they cannot be similar to each other. We call θ|s|,|r| as the
dissimilar threshold bound.

Signature Selection. We have two options in selecting the
probing signatures.
(1) Selecting the probing segment signature pSig+s,i,l. If

pSig+s,i,l ∩ iSig
+
r,i,l = φ, r and s have at least 1 mismatched

token on the i-th segment.
(2) Selecting the probing deletion signature pSig−s,i,l. If

pSig−s,i,l∩iSig
+
r,i,l = φ& pSig+s,i,l∩iSig

−
r,i,l = φ& pSig+s,i,l∩

iSig+r,i,l = φ, r and s have at least 2 mismatched tokens on
the i-th segment.

Suppose we select x probing segment signatures and y
probing deletion signatures of s such that x + 2y ≥ θ|s|,|r|.
If there is no matching on the selected signatures, r and s
have at least θ|s|,|r| mismatched tokens, then r and s cannot
be similar. Based on this property, we will present how to
select probing signatures for similarity search and join.

3.1.2 Distributed Indexing
Given a dataset R, we build a global index and a local

index offline. Then given an online query s, we select the
probing signatures of s, utilize the global index to locate
the partitions that contain s’s probing signatures, and send
the probing signature to such partitions. The executor that
monitors such partitions does a local search to compute the
local results. Figure 2 shows the indexing structure.

Offline Indexing. Note that different queries may have dif-
ferent thresholds and we require to support queries with any
choice of threshold. To achieve this goal, we utilize a thresh-
old bound to generate the index. For example, the threshold
bound for Jaccard is the smallest threshold for all queries
that the system can support, e.g., 0.6. Using this threshold
bound, we can select the indexing segment/deletion signa-
tures and build a local index. In addition, we also keep the
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frequency table of each signature to keep each signature’s fre-
quency and build a global index that keeps a mapping from
the signature to partitions that contain this signature.

Frequency Table. For each RDD Ri, for each record
r ∈ Ri, we compute its indexing segment number η|r| us-
ing the threshold bound. Then we generate the indexing
segment signature set of each record r, iSig+r and indexing
deletion signature set iSig−r . For each segment signature
g ∈ iSig+r , we collect its global frequency F+[g] and for
each deletion signature g′ ∈ iSig−r , we also collect its global
frequency F−[g′]. If we keep the frequency of all signatures,
the frequency table will be too large. Thus we only keep
the signatures whose frequencies exceed 2. In this way the
frequency table is very small, and the frequency table can
be easily distributed into every node.

Local Index. Next we shuffle the indexing signatures such
that (1) each signature and its inverted list of records that
contain this signature are shuffled to one and only one par-
tition, i.e., the same signature will be in the same partition
and (2) the same partition may contain multiple signatures
and their corresponding records. For each partition, we con-
struct an IndexRDD IRi for indexing signatures in this par-
tition. Each IndexRDD IRi contains several signatures and
the corresponding records, which includes two parts. The
first part is a hash-map which keeps the mapping from a sig-
nature to two lists of records: L+[g] keeps the records whose
indexing segment signatures contain g and L−[g] keeps the
records whose indexing deletion signatures contain g. We
use L[g] to denote L+[g].∪L−[g]. The second part is all the
records in this RDD, i.e., Di = ∪g∈IRi L[g]. Note that the

records are stored in the data list Di and L+[g] and L−[g]
only keep a list of pointers to the data list Di.
Global Index. Then for each signature, we keep the map-
ping from the signature to the partitions that contain this
signature. Note that we do not need to utilize a hash table
to keep the mapping. Instead, we only maintain a global
function P that maps a signature g to a partition p, i.e.,
P(g) = p. Thus the global index is rather small.

3.2 Similarity-based Query Operations
3.2.1 Similarity Search

Given an online query s, Dima utilizes the proposed in-
dexes to support similarity search operation in three steps.
(1) It first conducts a global search by utilizing the frequency
tables to select the probing signatures of s. Specifically, we
propose an optimal signature selection method to achieve
a balance-aware selection by using a dynamic-programing
algorithm. (2) For each selected probing signature, it uti-
lizes the global hash function to compute the partition that
contains the signature and sends the search request to the
corresponding partition. (3) Each partition further exploits
a local search to retrieve the inverted lists of probing signa-
tures and verify the records on the inverted lists to get local
answers. Finally, it returns the local answers.

3.2.2 Similarity Join
To join two sets R and S, a straightforward approach is to

first build the index for a set, e.g., R, then take each record
s ∈ S as a query and invoke the search algorithm to compute
its results. However, it is rather expensive for the driver,
because it is costly to select signatures for huge number of

queries. To address this issue, we propose an algorithm for
similarity join consisting of four steps. (1) It generates sig-
natures and builds the indexRDD for one dataset. (2) Then
it selects probing signatures for each length l. Since it is
expensive to utilize the dynamic-programming algorithm to
compute the optimal signatures. Thus we propose a greedy
algorithm to efficiently compute the high-quality signatures.
(3) For each selected signature it builds the probeRDD for
the other dataset. Since the matched probing and indexing
signatures are in the same executor, it can avoid data trans-
mission between different partitions. (4) It computes the
local join results in each executor based on the indexRDD
and probeRDD, and the master collects the results from dif-
ferent local executors.

3.3 Cost-Based Query Optimization
A SQL query may contain multiple operations, it is im-

portant to estimate the cost of each operation and thus the
query engine can utilize the cost to select a query plan, e.g.,
join order. Since Spark SQL has the cost model for exact
selection and join, we focus on estimating the cost for simi-
larity join and search. If there are multiple join predicates,
we also need to estimate the result size. In our system, we
adopt cost-based model to optimize a SQL query.

4. DEMONSTRATION SCENARIO
Similarity Join For Entity Matching. First, we will
demonstrate how the SimJoin operator of Dima helps solve
the entity matching problem. We use Dbpedia2 dataset
which is a knowledge base of entities.
Similarity Search For QueryLog Recommendation.
Next, we will demonstrate how Dima’s Select operator can
help provide instant recommendations to user’s search queries
that have spelling errors, to support interactive search.
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