
The VLDB Journal
DOI 10.1007/s00778-014-0367-9

REGULAR PAPER

A unified framework for approximate dictionary-based entity
extraction

Dong Deng · Guoliang Li · Jianhua Feng ·
Yi Duan · Zhiguo Gong

Received: 12 November 2013 / Revised: 28 April 2014 / Accepted: 11 July 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Dictionary-based entity extraction identifies pre-
defined entities (e.g., person names or locations) from doc-
uments. A recent trend for improving extraction recall is to
support approximate entity extraction, which finds all sub-
strings from documents that approximately match entities in
a given dictionary. Existing methods to address this problem
support either token-based similarity (e.g., Jaccard Similar-
ity) or character-based dissimilarity (e.g., Edit Distance).
It calls for a unified method to support various similar-
ity/dissimilarity functions, since a unified method can reduce
the programing efforts, the hardware requirements, and the
manpower. In this paper, we propose a unified framework
to support various similarity/dissimilarity functions, such as
jaccard similarity, cosine similarity, dice similarity, edit sim-
ilarity, and edit distance. Since many real-world applications
have high-performance requirement for approximate entity
extraction on data streams (e.g., Twitter), we focus on devis-
ing efficient algorithms to achieve high performance. We find
that many substrings in documents have overlaps, and we can
utilize the shared computation across the overlaps to avoid

D. Deng (B) · G. Li · J. Feng
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
e-mail: buaasoftdavid@gmail.com

G. Li
e-mail: liguoliang@tsinghua.edu.cn

J. Feng
e-mail: fengjh@tsinghua.edu.cn

Y. Duan
School of Software, Beihang University, Beijing, China
e-mail: windream1991@hotmail.com

Z. Gong
University of Macau, Macau, China
e-mail: fstzgg@umac.mo

unnecessary redundant computation. To this end, we propose
efficient filtering algorithms and develop effective pruning
techniques. Experimental results show our method achieves
high performance and outperforms state-of-the-art studies
significantly.

Keywords Approximate entity extraction · Unified
framework · Filtering algorithms · Pruning techniques

1 Introduction

Dictionary-based entity extraction identifies all the sub-
strings from documents that match the predefined entities in
a given dictionary. For example, consider a tweet document
“I’m in the mood for something Coka-Cola flavored but I
don’t want an actual Coke”, and a dictionary with two enti-
ties “Coca Cola” and “Coke”. Dictionary-based entity
extraction finds the predefined entity “Coke” from the doc-
ument. This problem has many real applications in the fields
of information retrieval, molecular biology, bioinformatics,
and natural language processing [5].

However, the document may contain typographical or
orthographical errors and the same entity may have dif-
ferent representations [31]. For example, the substring
“Coka-Cola” in the above document has orthographi-
cal errors. The traditional (exact) entity extraction cannot
find this substring from the document, since the substring
does not exactly match the predefined entity “Coca Cola”.
Approximate entity extraction is a recent trend to address this
problem, which finds all substrings from the document that
approximately match the predefined entities.

To improve extraction recall, in this paper, we study the
problem of approximate dictionary-based entity extraction,
which, given a dictionary of entities and a document, finds

123

D. Deng et al.

all substrings from the document similar to some entities in
the dictionary. Many similarity/dissimilarity functions have
been proposed to quantify the similarity between two strings,
such as jaccard similarity, cosine similarity, dice similarity,
edit similarity, and edit distance. For instance, in the above
example, suppose we use edit distance and the threshold is 3.
Approximate dictionary-based entity extraction can find the
substring “Coka-Cola” which is similar to the entity “Coca
Cola”.

Although there have been some studies on approximate
entity extraction [4,31], they support either token-based sim-
ilarity (e.g., Jaccard Similarity) or character-based dissim-
ilarity (e.g., Edit Distance). It calls for a unified method to
support various similarity/dissimilarity functions, since the
unified method can reduce not only the programing efforts,
but also the hardware requirements and the manpower needed
to maintain the codes for different functions. Moreover, many
real-world applications have high-performance requirement
on approximate entity extraction. For example, the high per-
formance is apparently very important for approximate entity
extraction on data streams (e.g., Twitter and online adver-
tisements). For instance, product analysts (e.g., Coca Cola
staff) want to be informed of relevant tweets that comment
on their products in Twitter. In this case, product analysts
register some entities as their interests, and an approximate
entity extraction system should efficiently deliver tweets to
relevant product analysts. We observe that many substrings
in the document have overlaps and we can share computation
across substrings in the document. For example, considering
the above document, many substrings such as “Coka-Cola”,
“oka-Cola”, and “Cola flavored” have overlap “Cola”. We
can utilize this feature to avoid the redundant computation
across overlaps of different substrings. For instance, we can
share the computation on the common substring “Cola” for
different substrings to improve the performance.

To address these problems, we propose a unified filtering
framework for approximate dictionary-based entity extrac-
tion, called “Faerie”, which can support various similar-
ity/dissimilarity functions. To avoid redundant computation
across overlaps of different substrings, we devise efficient
filtering algorithms to achieve high performance and make
the following contributions.

– We propose a unified framework to support many sim-
ilarity/dissimilarity functions, such as jaccard similarity,
cosine similarity, dice similarity, edit similarity, and edit
distance.

– We devise two effective filtering algorithms, the multi-
heap-based algorithm and the single-heap-based algo-
rithm, which utilize the shared computation across the
overlaps of multiple substrings of the document.

– We propose a hybrid-based algorithm to combine the
single-heap-based algorithm and the multi-heap-based
algorithm to improve the performance

– We develop efficient pruning techniques and devise effi-
cient algorithms to improve the performance.

– We have implemented our proposed techniques, and the
experimental results show that our method achieves high
performance and outperforms state-of-the-art approaches
significantly.

The remainder of this paper is organized as follows. We
propose a unified framework to support various similarity
functions in Sect. 2. Section 3 introduces a heap-based fil-
tering algorithm to utilize shared computation. We develop
pruning techniques in Sect. 4. We propose a hybrid method in
Sect. 5. We conduct extensive experimental studies in Sect. 6.
Related works are provided in Sect. 7. Finally, we conclude
the paper in Sect. 8.

2 A unified framework

We first formulate the problem of approximate entity extrac-
tion (Sect. 2.1), and then introduce a unified method to
support various similarity/dissimilarity functions (Sect. 2.2).
Finally, we introduce a concept of “valid substrings” to prune
unnecessary substrings (Sect. 2.3).

2.1 Problem formulation

Definition 1 (Approximate Entity Extraction) Given a dic-
tionary of entities E = {e1, e2, . . . , en}, a document D, a
similarity function, and a threshold, it finds all “similar”
pairs 〈s, ei 〉 with respect to the given function and threshold,
where s is a substring of D and ei ∈ E .

The similarity between two strings is usually quantified
by similarity/dissimilarity functions, and in this paper, we
focus on token-based similarity, character-based similarity,
and character-based dissimilarity.

Token-based similarity The token-based similarity takes
a string as a set of tokens. The representative functions
include Jaccard Similarity (jac), Cosine Similarity (cos),
and Dice Similarity (dice). Given two strings r and s, let
|r | denote the number of tokens in r . jac(r, s) = |r∩s|

|r∪s| ,
cos(r, s) = |r∩s|√|r |·|s| , and dice(r, s) = 2|r∩s|

|r |+|s| . For example,

jac(“vldb journal 2013”, “vldb journal”) = 2
3 ,

cos(“vldb journal2013”, “vldb journal”)= 2√
6

,

and dice(“vldb journal 2013”, “vldb journal”)
= 4

5 .
Character-based dissimilarity The character-based dis-

similarity takes a string as a sequence of characters. The rep-

123

Framework for entity extraction

Table 1 A dictionary of entities and a document

ID Entity e len(e) |e| (# of q-grams with q = 2)

(a) Dictionary E

1 kaushik ch 10 9

2 chakrabarti 11 10

3 chaudhuri 9 8

4 venkatesh 9 8

5 surajit ch 10 9

(b) Document D

an efficient filter for approximate
membership checking. venkaee shga kamunshik
kabarati, dong xin, surauijt chadhurisigmod

resentative function is Edit Distance. The edit distance of
strings r and s, denoted by ed(r, s), is the minimum number
of single-character edit operations (i.e., insertion, deletion,
and substitution) needed to transform r to s. For example,
ed(“surajit”, “surauijt”)=2.

Character-based similarity: The representative function is
Edit Similarity. The edit similarity between two strings r
and s is defined as eds(r, s) = 1 − ed(r,s)

max
(
len(r),len(s)

) , where

len(s) is the length of s. For example, eds(“surajit”,
“surauijt”) = 1 − 2

8 = 3
4 .

In this paper, two strings are said to be similar, if their
(jaccard, cosine, dice, edit) similarity is no smaller than
a given similarity threshold δ, or their edit distance is no
larger than a given edit-distance threshold τ . For instance,
consider the document D and dictionary E in Table 1.
Suppose the edit-distance threshold τ = 2. 〈“venkaee
sh”, “venkatesh”〉, 〈“surauijt ch”, “surajit ch”〉, and
〈“chadhuri”, “chaudhuri”〉 are three example results.
Especially, although the substring “chadhurisigmod” misses
a space between “chadhuri” and “sigmod” (a typographical
error), our method still finds “chadhuri” (similar to entity
“chaudhuri”).

It has been shown that approximate entity extraction can
improve recall [31]. For example, the recall can increase from
65.4 to 71.4 % when performing protein name recognition. In
this paper, we emphasize on improving the performance. We
focus on extracting textual entities. We assume the thresholds
(δ and τ) are pre-defined and how to select such thresholds
is orthogonal to this work.

2.2 A unified framework

In this section, we propose a unified framework to support
various similarity/dissimilarity functions.

We model both the entity and document as a set of tokens.
Especially for edit distance and edit similarity, we take q-
grams of an entity as tokens. A q-gram of a string s is a

substring of s with length q. The q-gram set of s, denoted
by G(s), is the set of all of s’s q-grams. For example, the
2-gram set of “surajit_ch” is {su, ur, ra, aj, ji, it,
t_, _c, ch}. If the context is clear, we use token to denote
token/gram; for edit distance and edit similarity, we use e to
denote G(e), e ∩ s to denote G(r) ∩ G(s), and |e| to denote
|G(e)| (i.e., |e| = len(e) − q + 1).

Given an entity e and a substring s, we transform different
similarities/dissimilarities to the overlap similarity (|e ∩ s|)
and use the overlap similarity as a unified filtering condition:
if e and s are similar, then |e ∩ s| cannot be smaller than a
threshold T > 0, where T can be computed as follows.

– Jaccard Similarity: T = �(|e| + |s|) ∗ δ
1+δ

.
– Cosine Similarity: T = �√|e| · |s| ∗ δ
.
– Dice Similarity: T = �(|e| + |s|) ∗ δ

2
.
– Edit Distance: T = max(|e|, |s|) − τ ∗ q.
– Edit Similarity:

T = �max(|e|, |s|) − (
max(|e|, |s|) + q − 1

)

∗(1 − δ) ∗ q
.

The correctness of these thresholds is stated in Lemma 1.

Lemma 1 Given an entity e and a substring s, we have,1

– Jaccard Similarity: If jac(e, s) ≥ δ, |e ∩ s| ≥ �(|e| +
|s|) ∗ δ

1+δ

.

– Cosine Similarity: If cos(e, s) ≥ δ, |e∩s| ≥ �√|e| · |s|∗
δ
.

– Dice Similarity: If dice(e, s) ≥ δ, |e ∩ s| ≥ �(|e| + |s|) ∗
δ
2
.

– Edit Distance: If ed(e, s) ≤ τ, |e ∩ s| ≥ max(|e|, |s|) −
τ ∗ q.

– Edit Similarity: If eds(e, s) ≥ δ,

|e ∩ s| ≥ �max(|e|, |s|) − (
max(|e|, |s|) + q − 1

) ∗
(1 − δ) ∗ q
.

Proof (1) Jaccard Similarity: As jac(e, s) = |e∩s|
|e∪s| =

|e∩s|
|e|+|s|−|e∩s| ≥ δ, we have |e ∩ s| ≥ (|e| + |s|) ∗ δ

1+δ
. As

|e ∩ s| is an integer, we have |e ∩ s| ≥ �(|e|+ |s|)∗ δ
1+δ

.

(2) Cosine Similarity: cos(e, s) = |e∩s|√|e|·|s| ≥ δ. Thus |e ∩
s| ≥ �√|e| · |s| ∗ δ
.

(3) Dice Similarity: dice(e, s) = 2|e∩s|
|e|+|s| ≥ δ. Thus |e∩ s| ≥

� |e|+|s|
2 ∗ δ
.

(4) Edit Distance: It is obvious as two strings r and s are
similar only if they share enough common q-grams [13].

1 In this paper, we omit the proof due to space constraints.

123

D. Deng et al.

(5) Edit Similarity: As eds(e, s) = 1 − ed(e,s)
max(len(e),len(s)) ≥

δ, ed(e, s) ≤ max(len(e), len(s)) ∗ (1 − δ). Based on
Edit Distance, we have |e ∩ s| ≥ max(|e|, |s|) −
max(len(e), len(s)) ∗ (1 − δ) ∗ q, thus |e ∩ s| ≥
�max(|e|, |s|) − (max(|e|, |s|) + q − 1) ∗ (1 − δ) ∗ q
.

�

Accordingly, we can transform various similarities or dis-
similarities to the overlap similarity and develop a unified
filtering condition: if |e ∩ s| < T , we prune the pair 〈e, s〉.
Note that given any similarity function and a threshold, if we
can deduce a lower bound for the overlap similarity of two
strings, our method can apply to this function. Specially, the
five similarity/distance functions we studied are commonly
used in information extraction and record linkage [4,31].

2.3 Valid substrings

We have an observation that some substrings in D will not
have any similar entities. For instance, consider the dictionary
and document in Table 1. Suppose, we use edit distance and
τ = 1. Consider substring “surauijt chadhurisigmod” with
length 23. As the lengths of entities in the dictionary are
between 9 and 11, the substring cannot be similar to any
entity. Next we discuss how to prune such substrings.

Given an entity e and a substring s, if s is similar to e, the
number of tokens in s (|s|) should be in a range [⊥e,�e],
that is ⊥e ≤ |s| ≤ �e, where ⊥e and �e are, respectively,
the lower and upper bound of |s|, computed as below:

– Jaccard Similarity: ⊥e = �|e| ∗ δ
 and �e = �|e|
δ

�.

– Cosine Similarity: ⊥e = �|e| ∗ δ2
 and �e = �|e|
δ2 �.

– Dice Similarity: ⊥e = �|e| ∗ δ
2−δ

 and �e = �|e| ∗ 2−δ
δ

�.
– Edit Distance: ⊥e = |e| − τ and �e = |e| + τ .
– Edit Similarity: ⊥e = �(|e| + q − 1) ∗ δ − (q − 1)
 and

�e = �|e|+q−1
δ

− (q − 1)�.

where δ is the similarity threshold and τ is the edit-
distance threshold. The correctness of the bounds is stated
in Lemma 2.

Lemma 2 Given an entity e, for any substring s, we have

– Jaccard Similarity: if jac(e, s) ≥ δ, �|e| ∗ δ
 ≤ |s| ≤
� |e|

δ
�.

– Cosine Similarity: if cos(e, s) ≥ δ, �|e| ∗ δ2
 ≤ |s| ≤
� |e|

δ2 �.

– Dice Similarity: if dice(e, s) ≥ δ, �|e| ∗ δ
2−δ

 ≤ |s| ≤
�|e| ∗ 2−δ

δ
�.

– Edit Distance: if ed(e, s) ≤ τ, |e| − τ ≤ |s| ≤ |e| + τ .

– Edit Similarity: if eds(e, s) ≥ δ,

�(|e| + q − 1) ∗ δ − (q − 1)
 ≤ |s| ≤
� |e| + q − 1

δ
− (q − 1)�.

Proof (1) Jaccard Similarity: As |e| ≥ |e ∩ s|, |e|
|s| ≥

|e|
|e|+|s|−|e∩s| ≥ |e∩s|

|e|+|s|−|e∩s| ≥ δ. Thus, we have

|s| ≤ � |e|
δ

�. As |s| ≥ |e ∩ s|, |s|
|e| ≥ |s|

|e|+|s|−|e∩s| ≥
|e∩s|

|e|+|s|−|e∩s| ≥ δ. Thus, we have |s| ≥ �|e| ∗ δ
. Hence,

�|e| ∗ δ
 ≤ |s| ≤ � |e|
δ

�.

(2) Cosine Similarity: As |e| ≥ |e ∩ s|, |e|√|e|·|s| ≥ |e∩s|√|e|·|s| ≥
δ. Thus, we have |s| ≤ � |e|

δ2 �. As |s| ≥ |e ∩ s|, |s|√|e|·|s| ≥
|e∩s|√|e|·|s| ≥ δ. Thus |s| ≥ �|e| ∗ δ2
. Hence �|e| ∗ δ2
 ≤

|s| ≤ � |e|
δ2 �.

(3) Dice Similarity: As |e| ≥ |e ∩ s|, 2|e|
|e|+|s| ≥ 2|e∩s|

|e|+|s| ≥ δ.

Thus |s| ≤ �|e|∗ 2−δ
δ

�. As |s| ≥ |e∩s|, 2|s|
|e|+|s| ≥ 2|e∩s|

|e|+|s| ≥
δ. Thus |s| ≥ �|e| ∗ δ

2−δ

. Hence �|e| ∗ δ

2−δ

 ≤ |s| ≤

�|e| ∗ 2−δ
δ

�.
(4) Edit Distance: As

∣∣|e|−|s|∣∣ ≤ τ, |e|−τ ≤ |s| ≤ |e|+τ .

(5) Edit Similarity: As eds(e, s) = 1 − ed(e,s)
max(len(e),len(s)) ≥

δ, ed(e, s) ≤ max(len(e), len(s)) ∗ (1 − δ). If |e| ≤
|s|, |len(s)−len(e)| ≤ ed(e, s) ≤ max(len(e), len(s))∗
(1 − δ) = len(s) ∗ (1 − δ). Thus len(s) ≤ len(e)

δ
and

|s| ≤ � |e|+q−1
δ

− (q −1)�. If |e| > |s|, len(e)− len(s) ≤
ed(e, s) ≤ max(len(e), len(s))∗(1−δ) = len(e)∗(1−
δ). len(s) ≥ len(e) ∗ δ and |s| ≥ �(|e| + q − 1) ∗ δ −
(q − 1)
. Thus �(|e| + q − 1) ∗ δ − (q − 1)
 ≤ |s| ≤
� |e|+q−1

δ
− (q − 1)�.

�
Based on Lemma 2, given an entity e, only those substrings

with token numbers between ⊥e and �e could be similar to
entity e, and others can be pruned. Especially, let ⊥E =
min{⊥e|e ∈ E} and �E = max{�e|e ∈ E}. Obviously, the
substrings in D with token numbers between ⊥E and �E

may have a similar entity in the dictionary E , and others
can be pruned. Based on this observation, we introduce the
concept of “valid substring.”

Definition 2 (Valid Substring) Given a dictionary E and a
document D, a substring s in D is a valid substring for an
entity e ∈ E if ⊥e ≤ |s| ≤ �e. A substring s in D is a valid
substring for dictionary E if ⊥E ≤ |s| ≤ �E .

For instance, consider the dictionary and document in
Table 1. Suppose we use edit similarity, and δ = 0.8 and
q = 2. Consider entity e5 = “surajit ch”. We have

⊥e5 = �(|e5| + q − 1) ∗ δ − (q − 1)
 = 7,

�e5 = �|e5| + q − 1

δ
− (q − 1)� = 11.

123

Framework for entity extraction

Only the valid substrings with token numbers between 7 and
11 could be similar to entity e5. As ⊥E = 7 and �E = 12,
only the valid substrings with token numbers between 7 and
12 could have similar entities in the dictionary, and all other
substrings (e.g., “surauijt chadhurisigmod”) can be pruned.

A naive method to solve the approximate entity extraction
problem first enumerates every valid substring of the docu-
ment, and then for each valid substring and each entity, it
calculates their similarity/dissimilarity and outputs the simi-
lar pairs. However, this naive method requires to enumerate
large numbers of pairs and thus leads to low performance. To
this end, we employ a filter-and-verify framework. In the fil-
ter step, we generate the candidate pairs of a valid substring
in document D and an entity in dictionary E , whose overlap
similarity is no smaller than a threshold T ; and in the verify
step, we verify the candidate pairs to get the final results, by
computing the real similarity/dissimilarity. As the verifica-
tion step is very easy to address by using a merge-join-based
algorithm, in this paper we focus on the filter step.

3 Heap-based filtering algorithms

The filter-and-verify framework relies on effective index
structures and efficient filtering algorithms to prune dissim-
ilar pairs based on the index structures. To this end, in this
section, we first introduce an index structure (Sect. 3.1), and
then propose two heap-based filtering algorithms, the multi-
heap-based algorithm (Sect. 3.2) and the single-heap-based
algorithm (Sect. 3.3).

3.1 An inverted index structure

A valid substring is similar to an entity only if they share
enough common tokens. To efficiently count the number of
their common tokens, we build an inverted index for all enti-
ties, where entries are tokens (for jaccard similarity, cosine
similarity, and dice similarity) or q-grams (for edit similar-
ity and edit distance), and each entry has an inverted list
that keeps the ids of entities that contain the corresponding
token/gram, sorted in ascending order. For example, Fig. 1
gives the inverted list for entities in Table 1 using q-grams
with q = 2.

For each valid substring s in D, we first get its tokens
and the corresponding inverted lists. Then, for each entity in
these inverted lists, we count its occurrence number in the
inverted lists, i.e., the number of inverted lists that contain
the entity. Obviously, the occurrence number of entity e is

Fig. 1 Inverted indexes for entities in Table 1

exactly |e ∩ s|.2 For each entity, e with occurrence number
no smaller than T (|e ∩ s| ≥ T), 〈s, e〉 is a candidate pair.

For example, consider a valid substring “surauijt ch”. We
first generate its token set {su, ur, ra, au, ui, ij, jt, t_,
_c, ch} and get the inverted lists (the italic ones in Fig. 1).
Suppose we use edit distance and τ = 2. For entity e5, T =
max(|e5|, |s|) − τ ∗ q = 6. As e5’s occurrence number is 6,
〈“surauijt ch”, e5=“surajit ch”〉 is a candidate pair.

For simplicity, given an entity e and a valid substring s,
we use e’s occurrence number in s (or s’s inverted lists) to
denote e’s occurrence number in the inverted lists of tokens
in s. To efficiently count the occurrence numbers, we propose
heap-based filtering algorithms in the following sections.

3.2 Multi-heap-based method

In the filter step of the filter-and-verify framework, we focus
on generating the candidate pairs of a valid substring in doc-
ument D and an entity in dictionary E , whose overlap sim-
ilarity is not smaller than a threshold T . Using the inverted
indexes, we want to count the occurrence number of the entity
on the inverted lists of the valid substring and output the pair
of the entity and the valid substring as a candidate if the
occurrence number is not smaller than T . To facilitate com-
puting the occurrence number and avoid enumerating every
pairs, we propose a multi-heap-based method.

We first enumerate the valid substrings in D (with token
number between ⊥E and �E). Then for each valid substring,
we generate its tokens and construct a min-heap on top of the
non-empty inverted lists of its tokens. Initially, we use the first
entity of every inverted list to construct the min-heap. For the
top entity on the heap, we count its occurrence number on

2 In this paper, we take e and s as multisets, since there may exist duplicate tokens in
entities and substrings of the document. Even if they are taken as sets, we can also use
our method for extraction.

Fig. 2 A heap structure for “surauijt ch”

123

D. Deng et al.

Table 2 Complexity of multi-heap based methods

(a) Space complexity

Maximum Heap O(�E)

(b) Time complexity

Heap Construction O
(∑�E

l=⊥E
(|D| − l + 1) ∗ l

)

Heap Adjustment O
(∑�E

l=⊥E
log(l) ∗ l ∗ N

)

the heap (i.e., the number of inverted lists that contain the
entity). If the number is not smaller than T , the pair of this
valid substring and the entity is a candidate pair. Next, we
pop the top entity, add the next entity of the inverted list
from which the top entity is selected into the heap, adjust the
heap, and count the occurrence number of the new top entity.
Iteratively, we find all candidate pairs.

For example, consider a valid substring “surauijt ch”. We
first generate its token set and construct a min-heap on top
of the first entities of every inverted list (Fig. 2). Next, we
iteratively adjust the heap and get the entities {1, 1, 1, 2, 2,
3, 3, 3, 5, 5, 5, 5, 5, 5} in ascending order. We count the
occurrence numbers of each entry. For example, the occur-
rence numbers of e1, e2, e3, and e5 are, respectively, 3, 2, 3,
and 6. Suppose we use edit distance and τ = 2. For entity e5,
T = max(|e5|, |s|)−τ ∗q = 6. The pair of the substring and
entity e5 is a candidate pair. Finally, we verify the candidate
pair and get the final result.3

Complexity For a valid substring with l tokens, its corre-
sponding heap contains at most l non-empty inverted lists.
Thus, the space complexity of the heap is O(l). As we can
construct heaps one by one, the space complexity is the space
of the maximum heap, i.e., O(�E) (Table 2a).

The time complexity for constructing a heap of a valid
substring with l tokens is O(l). As there are |D|− l +1 valid
substrings with l tokens, the heap construction complexity
for such valid substrings is O(

(|D| − l + 1) ∗ l
)
, and the

total heap construction complexity is O(∑�E
l=⊥E

(|D| − l +
1) ∗ l

)
(Table 2b). In addition, for each entity, we need to

adjust the heap containing the entity. Consider such heap
with l inverted lists. The time complexity of adjusting the
heap once is O(log(l)). There are l such heaps that contain
the entity (Fig. 3). Thus, for each entity, the time complexity
of adjusting the heaps is O(∑�E

l=⊥E
log(l) ∗ l

)
. Suppose N

is the total numbers of entities in inverted lists of tokens
in D. The total time complexity of adjusting the heaps is
O(∑�E

l=⊥E
log(l) ∗ l ∗ N

)
(Table 2b).

It is worth noting that although we can scan all the inverted
lists to compute the occurrences, this method requires high

3 For ease of presentation, we use a loser tree to represent a heap struc-
ture in our examples.

Fig. 3 A multi-heap structure

space complexity to keep the occurrences of each entity
and the space complexity is O(n) where n is the number
of entities in the dictionary. The space complexity of the
multi-heap-based method is O(1). Moreover, we can utilize
more efficient filtering techniques to improve the heap-based
methods [21] which can void scanning all the entities in the
inverted lists. In this paper, we propose effective algorithms
to simultaneously find similar entities for multiple substrings
(with large number of overlaps), which are orthogonal to the
heap-merge algorithms [21].

3.3 Single-heap-based method

The multi-heap-based method needs to access the inverted
lists multiple times and does large numbers of heap-
adjustment operations. To address this issue, we propose a
single-heap-based method which accesses every inverted list
only once in this section.

We first tokenize the document D and get a list of tokens.
For each token, we retrieve the corresponding inverted list.
We use token[i] to denote the i-th token, and IL[i] to denote
the inverted list of the i-th token. We construct a single min-
heap on top of non-empty inverted lists of all tokens in D,
denoted by H , and use the heap to find candidate pairs.

For ease of presentation, we use a two-dimensional array
V [1 · · · |D|][⊥E · · · �E] to count an entity’s occurrence
numbers in every valid substring’s inverted lists. Formally,
let D[i, l] denote a valid substring of D with l tokens start-
ing with the i-th token. Given an entity e, we use V [i][l] to
count e’s occurrence number in D[i, l]’s inverted lists, i.e.,
V [i][l] = |e ∩ D[i, l]|. We compute V [i][l] as follows. First
for each entity, V [i][l] is initialized as 0 for 1 ≤ i ≤ |D| and
⊥E ≤ l ≤ �E .

For the top entity e on the heap selected from the i-th
inverted list, we increase the values of relevant entries in
the array by 1 as follows. Without loss of generality, firstly
consider the heap with l tokens. Obviously, only D[i − l +
1, l], . . . , D[i, l] contain the i-th inverted list (Fig. 4), thus
V [i − l + 1][l], . . . , V [i][l] are relevant entries. Similarly,
for ⊥E ≤ l ≤ �E , V [i − l + 1][l], . . . , V [i][l] are relevant
entries. We increase the value of each relevant entry by 1. If
V [i][l] ≥ T, 〈D[i, l], e〉 is a candidate pair. Then, we pop the

123

Framework for entity extraction

Table 3 Complexity of single-heap based methods

(a) Space complexity

Single heap O(|D|)
Counting occurrence numbers O(|D| − ⊥E + 1|)
(b) Time complexity

Heap construction O(|D|)
Heap adjustment O(

log(|D|) ∗ N
)

Counting occurrence numbers O(
N ∗ max{∑�e

l=⊥e
l|e ∈ E})

top entity, add the next entity in IL[i] into the heap, adjust
the heap and get the next entity, and count the occurrence
number of the new entity. We repeat the above steps, and
iteratively, we can find all candidate pairs.

Actually, for entity e, only the valid substrings with token
numbers between ⊥e and �e could be similar to entity e.4

Thus, we only need to maintain the array V .
Next, we use a running example to walk through the

single-heap-based method. For example, in our running
example, consider a document “venkaee shga
kamunshi”. We construct a single heap on top of the doc-
ument as shown in Fig. 5. Suppose we use edit distance and
τ = 2. ⊥E = 6 and �E = 12. For the entity e4 selected
from the first token, we only need to increase its occur-
rence numbers in valid substrings D[1, l] for ⊥E ≤ l ≤
�E , i.e., D[1, 6], . . . , D[1, 12]. We increase the values of
V [1][6], . . . , V [1][12] by 1. For the next entity e4 selected
from the second token, we increase its occurrence numbers
in valid substrings D[1, l], D[2, l] for ⊥E ≤ l ≤ �E . Sim-
ilarly, we can count all occurrence numbers. For instance,
the occurrence number of entity e4 (“venkatesh”) in
D[1, 9] is 5. As the occurrence number is no smaller than
T = max(|e4|, |D[1, 9]|)−τ ∗q = 9−2∗2 = 5, the pair of
D[1, 9] (“venkaee sh”) and entity e4 (“venkatesh”)
is a candidate pair. Actually, as ⊥e4 = 6 and �e4 = 10, we
only need to consider the entries in V [1 · · · 20][6 · · · 10].

Complexity The space complexity of the single heap is
O(|D|) (Table 3a). To count the occurrence numbers of an
entity, we do not need to maintain the array and propose an
alternative method. We first pop all entities with the same
id from the heap (with |D| space to store them). Suppose
the entity is e. Then, we increase e’s occurrence numbers in
V [1 · · · |D| − l + 1][l] by varying l from ⊥e to �e. In this
way, we only need to maintain a one-dimensional array. Thus,
the space complexity for counting the occurrence number is
O(max{|D|−⊥e+1|e ∈ E}) = O(|D|−⊥E +1) (Table 3a).

4 Note that, we can get entity e’s token number |e| using a hash map, which keeps the
pair of an entity and its token number, thus we can get the token number of an entity
in O(1) time complexity.

Fig. 4 A single-heap structure

The time complexity of heap construction is O(|D|)
(Table 3b). To compute the occurrence numbers of each
entity, we need to adjust the heap, and the total time complex-
ity of adjusting the heap is O(log(|D|) ∗ N), where N is the
total number of elements in every inverted list. In addition,
for each entity, we need to increase its occurrence numbers.
For entity e, there are

∑�e
l=⊥e

l entries needed to be increased
by 1 (Fig. 4), and the maximum number of such entries (for
any entity) is max{∑�e

l=⊥e
l|e ∈ E}. Thus, the total time com-

plexity is O(
N ∗ max{∑�e

l=⊥e
l|e ∈ E}) (Table 3b).

Note that the single-heap-based method has used the
shared computation across the overlaps (tokens) of differ-
ent valid substring, since it only needs to scan each inverted
list once. It has much lower time complexity than multi-
heap-based method and achieves much higher performance
(Sect. 6).

4 Improving the single-heap-based method

The single-heap-based method still requires to compute the
occurrence number of every entity. If there are large numbers
of entities, this method is still rather expensive. To address
this issue, in this section, we improve the single-heap-based
method and propose effective techniques to skip many irrel-
evant entities.

4.1 Pruning techniques

In this section, we propose several pruning techniques by
estimating the lower bounds of |e ∩ s|.

Lazy-count pruning We find that if the occurrence num-
ber of an entity in the heap is small enough, we do not need
to count its occurrence numbers for every valid substring
immediately. Instead, we count the occurrence numbers in a
lazy manner.

123

D. Deng et al.

τ=2

Fig. 5 An example for the single-heap-based method on a document
“venkaee shga kamunshi”

Formally, given an entity e, we use a sorted position list
Pe = [p1, · · · , pm] to keep its occurrences in the heap (in
ascending order). Each element in Pe is the position of the
corresponding token whose inverted list contains entity e.
We can easily get the position list using the heap structure.
Then, we count e’s occurrence number in the heap, i.e., the
number of elements in Pe (|Pe|). If the number is smaller than
a threshold, denoted as Tl , we prune the entity; otherwise
we count its occurrence number in its valid substrings with
token numbers between ⊥e and �e (Sect. 3.3). For example,
in Fig. 5, Pe1 = [4, 9, 14, 19, 20] and |Pe1 | = 5.

Next, we discuss how to compute the threshold Tl . Recall
the threshold T for the overlap similarity (Sect. 2.2). T
depends on both |e| and |s|. To derive a lower bound of T
which only depends on |e|, we use ⊥e to replace |s| and the
new bound Tl is computed as below.

– Jaccard Similarity: Tl = �|e| ∗ δ
.
– Cosine Similarity: Tl = �|e| ∗ δ2
.
– Dice Similarity: Tl = �|e| ∗ δ

2−δ

.

– Edit Distance: Tl = |e| − τ ∗ q.
– Edit Similarity: Tl = �|e| − (

(|e| + q − 1) ∗ (1−δ)
δ

∗ q
)
.

Obviously Tl ≤ T . If |Pe| < Tl ≤ T, e cannot be similar
to any substring, and thus we can prune e (Sect. 2.2). For
instance, in Fig. 5, consider e1. Suppose τ = 1. |e1| = 9.
Tl = |e1| − τ ∗ q = 9 − 2 = 7. As |Pe1 | = 5 < Tl , e1 can be
pruned. The correctness is stated in Lemma 3.

Lemma 3 Given an entity e on the single heap, if its occur-
rence number in the heap (|Pe|) is smaller than Tl , e will not
be similar to any valid substring.

Proof Since the inverted lists of D must contain those of
D’s any substring, e’s occurrence in any valid substring must
appear in D. Thus its occurrence number in any valid sub-

string must be smaller than Tmin. Thus e will not be similar
to any valid substring. �

Bucket-count pruning We have an observation that we
can split the position list Pe into several disjoint buckets and
apply the lazy-count pruning technique on each of the buck-
ets. As each bucket contains a sublist list of Pe, the bucket
size is much smaller than |Pe| and thus each bucket has larger
probability to be pruned. Next, we discuss how to split Pe

into disjoint buckets.
Consider an entity e. If a valid substring s is similar to e,

s must have at most �e tokens and shares at least Tl tokens
with e. In other words, if s is similar to e, they must have
no larger than �e − Tl mismatched tokens. We can use this
property for effective pruning.

Formally, given two neighbor elements in list Pe, pi

and pi+1, any substring containing both the two tokens
(token[pi] and token[pi+1]) has at least pi+1 − pi − 1
mismatched tokens. If pi+1 − pi − 1 > �e − Tl , any sub-
strings containing both the two tokens cannot be similar to
e. Thus we do not need to count e’s occurrence numbers for
any substrings.

To use this feature, we partition the elements in Pe into
different buckets. If the number of elements in a bucket is
smaller than Tl , we can prune all the elements in the bucket
(lazy-count pruning); otherwise, we use the elements in the
bucket to count e’s occurrence number for valid substrings
with token numbers between ⊥e and �e (Sect. 3.3).

Next, we introduce how to do the partition. Initially, we
create a bucket b1 and put the first element p1 into the bucket.
Then, we consider the next element p2. If p2 − p1 − 1 >

�e − Tl , we create a new bucket b2 and put p2 into bucket
b2; otherwise, we put p2 into bucket b1. Iteratively, we can
partition all elements into different buckets.

We give a tighter bound for different similarity functions.
For example, consider edit distance. We can use pi+1 − pi −
1 > τ ∗ q for pruning, since there exists at least τ ∗ q + 1
mismatched tokens between pi and pi+1, which need at least
τ+1 single-character edit operations to destroy these τ∗q+1
mismatched tokens. Similarly, for edit similarity, we can use
pi+1 − pi − 1 > � (|e|+q−1)

δ
∗ (1 − δ) ∗ q� for pruning.

For example, in Fig. 5, suppose we use edit distance and
τ = 1. Consider Pe4 = [1, 2, 3, 4, 9, 14, 19]. Tl = |e4|− τ ∗
q = 8 − 1 ∗ 2 = 6. Obviously, e4 can pass the lazy-count
pruning as |Pe4 | ≥ Tl . Next, we check whether it can pass
the bucket-count pruning. We first partition Pe4 into different
buckets. Initially, we create a bucket b1 and put p1 into the
bucket. Next, for p2 = 2, as p2 − p1 −1 ≤ τ ∗q = 2, we put
p2 into bucket b1. Similarly, p3 = 3 and p4 = 4 are added
into b1. For p5 = 9, as p5 − p4 − 1 > τ ∗q, we create a new
bucket b2 and add p5 into bucket b2. We repeat theses steps
and finally get b1 = [1, 2, 3, 4], b2 = [9], b3 = [14], and
b4 = [19]. As the size of each bucket is smaller than Tl , we

123

Framework for entity extraction

Fig. 6 Candidate window and Valid window

can directly prune the elements in each bucket. Thus, we do
not need to count the occurrence number of e4 in any valid
substrings.

Moreover, we can generalize this idea: Given two ele-
ments pi and p j (i < j), if p j − pi − (j − i) > �e − Tl ,
any substrings containing both the two tokens (token[pi]
and token[p j]) cannot be similar to entity e. For exam-
ple, consider the document and entities in Table 1. Pe4 =
[10, 17, 33, 34, 43, 58, 59, 60, 61, 66, 71, 76, 81, 86]. Sup-
pose, we use edit distance and τ = 2. |e4| = 8, Tl =
|e4|−τ ∗q = 4. ⊥e4 = |e4|−τ = 6 and �e4 = |e4|+τ = 10.
If we apply the bucket-count pruning, we will get five buck-
ets b1 = [10], b2 = [17], b3 = [33, 34], b4 = [43], and
b5 = [58, 59, 60, 61, 66, 71, 76, 81] and only b5 can pass
the lazy-count pruning. Nevertheless, we can further remove
p11 from b5 as p11 − p9 − (11 − 9) > �e4 − Tl . Simi-
larly, we can also remove p12 and p13 from b5 and finally
get b5 = [58, 59, 60, 61, 66]. Next, we will introduce how
to use this property to do further pruning.

Batch-count pruning Inspired from bucket-count prun-
ing, we find that we do not need to enumerate each element
in the position list Pe to count the occurrence numbers for
every valid substring. Instead, we check sublists of Pe and
check whether the sublists can produce candidate pairs. If so,
we find candidate pairs in the sublists; otherwise, we prune
the sublists.

Formally, if a valid substring s is similar to entity
e, they must share enough common tokens (|e ∩ s| ≥
Tl). In other words, we only need to check the sub-
list with no smaller than Tl elements. Consider a sub-
list Pe[i · · · j] with |Pe[i · · · j]| = j − i + 1 ≥ Tl .
Let D[pi · · · p j] denote the substring exactly containing
tokens token[pi], token[pi+1], · · · , token[p j] (Fig. 6). If
|D[pi · · · p j]| = p j − pi +1 > �e, any valid substring con-
taining all tokens in D[pi · · · p j] has larger than �e tokens.
Thus, we can prune Pe[i · · · j]. On the contrary, D[pi · · · p j]
may be similar to e if ⊥e ≤ |D[pi · · · p j]| ≤ �e. This prun-
ing technique is much power than the mismatch-based prun-
ing, since if p j−pi−(j−i) > �e−Tl , then p j−pi+1 > �e;
on the contrary if p j−pi+1 > �e, p j−pi−(j−i) > �e−Tl

may not hold. In addition, as |Pe[i · · · j]| ≤ |D[pi · · · p j]|,
|Pe[i · · · j]| should be not larger than �e, thus we have
Tl ≤ |Pe[i · · · j]| ≤ �e.

Based on this observation, we can first generate sublists of
Pe with sizes (number of elements) between Tl and �e, i.e.,
Tl ≤ |Pe[i · · · j]| ≤ �e. Then, for each such list Pe[i · · · j],
if |D[pi · · · p j]| > �e, we prune the sublist; otherwise, if
⊥e ≤ |D[pi · · · p j]| ≤ �e, we find candidates of entity e (a
substring s is a candidate of e if |e ∩ s| ≥ T and ⊥e ≤ |s| ≤
�e). For each candidate s of entity e, 〈s, e〉 is a candidate
pair.

Next, we discuss how to find candidates of e based on Pe.
For ease of presentation, we first introduce two concepts.

Definition 3 (Valid window and Candidate window) Con-
sider an entity e and its position list Pe = [p1 · · · pm]. A sub-
list Pe[i · · · j] is called a window of Pe for 1 ≤ i ≤ j ≤ m.
Pe[i · · · j] is called a valid window, if Tl ≤ |Pe[i · · · j]| ≤
�e. Pe[i · · · j] is called a candidate window, if Pe[i · · · j] is
a valid window and ⊥e ≤ |D[pi · · · p j]| ≤ �e.

The valid window restricts the length of a window. The
candidate window restricts the number of tokens of a valid
substring. If a valid substring is a candidate of entity e, it must
contain a candidate window (Fig. 6). Recall the above exam-
ple. Pe4 = [10, 17, 33, 34, 43, 58, 59, 60, 61, 66, 71, 76, 81,

86]. The edit distance τ = 2. |e4| = 8, Tl = |e4| −
τ ∗ q = 4. ⊥e4 = |e4| − τ = 6 and �e4 = |e4| +
τ = 10. Pe4 [1 · · · 4] = [10, 17, 33, 34], Pe4 [1 · · · 5] =
[10, 17, 33, 34, 43], and Pe4 [6 · · · 9] = [58, 59, 60, 61] are
three valid windows. Pe4 [1 · · · 4] is not a candidate win-
dow as p4 − p1 + 1 = 34 − 10 + 1 > �e4 . The reason
is that D[p1 · · · p4] contains more than �e4 tokens and any
substring containing Pe4 [1 · · · 4] must have more than �e4

tokens. Although p9 − p6 + 1 ≤ �e4 , Pe4 [6 · · · 9] is not a
candidate window as p9 − p6 + 1 < ⊥e4 .

Notice that we can optimize the pruning condition for
jaccard similarity, cosine similarity, and dice similarity,
since they depend on |e ∩ s|. Given a valid window
Pe[i · · · j], let s = D[pi · · · p j]. |Pe[i · · · j]| ≥ |e ∩ s|.5
Take jaccard similarity as an example. If s and e are
similar, |e∩s|

|e∪s| ≥ δ. |D[pi · · · p j]| = |s| ≤ |e ∪ s| ≤
|e∩s|

δ
≤ min(|e|,|Pe[i ··· j]|)

δ
. Thus, we give a tighter bound of

|D[pi · · · p j]|. For jaccard similarity, ⊥e ≤ |D[pi · · · p j]| ≤
min(|e|,|Pe[i ··· j]|)

δ
; for cosine similarity, ⊥e ≤ |D[pi · · · p j]| ≤

min(|e|,|Pe[i ··· j]|)
δ2 ; for dice similarity, ⊥e ≤ |D[pi · · · p j]| ≤

min(|e|, |Pe[i, j]|) ∗ 2−δ
δ

.
Now, we introduce how to find candidates of e from can-

didate windows Pe[i · · · j]. The substrings that contain all
tokens in D[pi · · · p j] may be candidates of e. We can find

5 As D[pi · · · p j] may contain duplicate tokens, |Pe[i · · · j]| ≥ |e ∩ s|
and |Pe[i · · · j]| may also be larger than |e|.

123

D. Deng et al.

Fig. 7 span operation

Fig. 8 shift operation

these substrings as follows. As these substrings must contain
token[pi], the “maximum start position” of such substrings is
pi and the “maximum end position” is up = pi +�e−1. Sim-
ilarly, as these substrings must contain token[p j], the “min-
imum start position” is lo = p j −�e + 1 and the “minimum
end position” is p j . Thus, we only need to find candidates
among substrings D[pstart · · · pend] where lo ≤ pstart ≤
pi , p j ≤ pend ≤ up. Substring s = D[pstart · · · pend] is
a candidate of e if ⊥e ≤ |s| = pend − pstart + 1 ≤ �e

and |e ∩ s| ≥ T . (Here, we use threshold T as s =
D[pstart · · · pend] is known.)

However, this method may generate duplicate candi-
dates. For example, suppose p j − �e + 1 < pi−1 + 1.
D[pi−1,�e] = D[pi−1 · · · (pi−1 + �e − 1)] could be a
candidate generated from Pe[i · · · j]. In this case, as ⊥e ≤
p j − pi + 1 ≤ p j − pi−1 + 1 ≤ �e and Tl ≤ |Pe[i · · · j]| ≤
|Pe[i − 1 · · · j]| = p j − pi−1 + 1 ≤ �e, Pe[(i − 1) · · · j]
is also a candidate window. Thus, Pe[(i − 1) · · · j] also gen-
erates the candidate D[pi−1,�e]. For Pe[i · · · j], to avoid
generating duplicates with Pe[i −1 · · · j] and Pe[i · · · j +1],
we will not extend Pe[i · · · j] to positions smaller than
pi−1 + 1 and larger than p j+1 − 1, and set lo = max(p j −
�e + 1, pi−1 + 1), up = min(pi + �e − 1, p j+1 −
1). In this way, our method will not generate duplicate
candidates.

In summary, to find all candidates for an entity, we first get
the entity’s position list, and then generate the valid windows
and candidate windows. Next, we identify its candidates from
candidate windows. Finally, the pair of each candidate and
the entity is a candidate pair.

4.2 Finding candidate windows efficiently

Given an entity e, as there are larger numbers of valid win-
dows (

∑�e
l=Tl

|Pe| − l + 1), it could be expensive to enu-

merate the valid windows for finding all candidate windows.
To improve the performance, this section proposes efficient
methods to find candidate windows.

Span and Shift based method: For ease of presentation,
we first introduce a concept “possible candidate windows.” A
valid window Pe[i · · · j] is called a possible candidate win-
dow if p j − pi +1 ≤ �e. Based on this concept, we introduce
two operations: span and shift. Given a current valid win-
dow Pe[i · · · j], we use the two operations to generate new
valid windows as follows.

– span: As shown in Fig. 7, if p j − pi + 1 ≤ �e, for
k ≥ j, Pe[i · · · k] may be a possible candidate window.
We span it to generate all possible candidate windows
starting with i : Pe[i · · · (j + 1)], . . . , Pe[i · · · x], where
x satisfies px − pi + 1 ≤ �e and px+1 − pi + 1 > �e.
For j ≤ k ≤ x , if pk − pi + 1 ≥ ⊥e, Pe[i · · · k] is a
candidate window. On the contrary, if p j − pi +1 > �e,
for k ≥ j , as pk − pi +1 ≥ p j − pi +1 > �e, Pe[i · · · k]
cannot be a candidate window. Thus, we do not need to
span Pe[i · · · j].

– shift: As shown in Fig. 8, we shift to a new valid window
Pe[(i + 1) · · · (j + 1)].

We use the two operations to find candidate windows as
follows. Initially, we get the first valid window Pe[1 · · · Tl].
We do span and shift operations on Pe[1 · · · Tl]. For the
new valid windows generated from the span operation, we
check whether they are candidate windows; for the new valid
window generated from the shift operation, we do span
and shift operations on it. Iteratively, we can find all can-
didate windows from Pe[1 · · · Tl]. We give an example to
show how our method works. For e4(“venkatesh”), Pe4 =
[10, 17, 33, 34, 43, 58, 59, 60, 61, 66, 71, 76, 81, 86]. Sup-
pose τ = 2. |e4| = 8, Tl = |e4| − τ ∗ q = 4,⊥e4 =

123

Framework for entity extraction

Fig. 9 An example for span
and shift operations

Fig. 10 span operation in a
binary-search way

|e4| − τ = 6,�e4 = |e4| + τ = 10. The first valid win-
dow is Pe4 [1 · · · 4] = [10, 17, 33, 34]. As p4 − p1 + 1 =
34 − 10 + 1 > �e4 , we do not need to do span operation.
We do a shift operation and get the next window Pe4 [2 · · · 5].
As p5 − p2 + 1 = 43 − 17 + 1 > �e4 , we do another shift
operation. When we shift to valid window Pe4 [6 · · · 9], as
p9 − p6 +1 = 61−58+1 < ⊥e4 ≤ �e4 , Pe4 [6 · · · 9] is not a
candidate window. We do a span operation. As p10− p6+1 =
9 ≤ �e4 and p11 − p6 + 1 = 14 > �e4 , x = 10. We get
a valid window Pe4 [6 · · · 10], which is a candidate window.
Next, we shift to Pe4 [7 · · · 10]. Iteratively, we find all candi-
date windows: Pe4 [6 · · · 10] and Pe4 [7 · · · 10] (Fig. 9).

Given a valid window Pe[i · · · j], if p j − pi + 1 > �e,
the shift operations can prune the valid windows starting with
i , e.g., Pe[i · · · k] for j < k ≤ i + �e − 1. However, this

method still scans large numbers of candidate windows. To
further improve performance, we propose a binary-search-
based method which can skip many more valid windows.

Binary Span and Shift based method: The basic idea is as
follows. Given a valid window Pe[i · · · j], if p j − pi + 1 >

�e, we will not shift to Pe[(i+1) · · · (j+1)]. Instead, we want
to directly shift to the first possible candidate window after
i , denoted by Pe[mid · · · (mid + j − i)], where mid satisfies
pmid+ j−i − pmid + 1 ≤ �e and for any i ≤ mid ′ < mid,
pmid ′+ j−i − pmid ′ +1 > �e. Similarly, if p j − pi +1 ≤ �e,
we will not iteratively span it to Pe[i · · · (j+1)], Pe[i · · · (j+
2)], . . . , Pe[i · · · x]. Instead, we want to directly span to the
last possible candidate window starting with i , denoted by
Pe[i · · · x], where x satisfies px − pi + 1 ≤ �e and for any
x ′ > x, px ′ − pi + 1 > �e.

123

D. Deng et al.

Fig. 11 shift operation in a
binary-search way

If the function F(x) = px − pi + 1 for span and
F ′(mid) = pmid+ j−i − pmid +1 for shift are monotonic, we
can use a binary-search method to find x and mid efficiently.

For the span operation, obviously F(x) = px − pi +
1 is monotonic as F(x + 1) − F(x) = px+1 − px > 0.
Next, we give the lower bound and upper bound of the search
range. Obviously, x ≥ j . In addition, as pi + j ≤ pi+ j , we
have px ≤ pi + �e − 1 ≤ pi+�e−1 and x ≤ i + �e − 1.
Thus, we find x by doing a binary search between j and
i + �e − 1.

However, F ′(mid) = pmid+ j−i − pmid + 1 is not
monotonic. We have an observation that F ′′(mid) = (

p j +
(mid − i)

) − pmid + 1 is monotonic, since F ′′(mid − 1) −
F ′′(mid) = pmid − pmid−1 − 1 ≥ 0. More importantly, for
i ≤ mid ≤ j , F ′′(mid) < F ′(mid) as

(
p j + (mid − i)

) ≤
pmid+ j−i . Thus if F ′′(mid − 1) > �e, F ′(mid − 1) > �e

and Pe[(mid − 1) · · · (mid − 1 + j − i)] cannot be a candi-
date window. If F ′′(mid) ≤ �e, Pe[(mid) · · · (mid + j −i)]
could be a candidate window. In this way, we can find
mid by doing a binary search between i and j such that
F ′′(mid − 1) > �e and F ′′(mid) ≤ �e. If F ′(mid) ≤ �e,
we have found the last possible candidate window; otherwise,
we continue to find mid ′ between mid+1 and mid+1+ j−i .
Iteratively, we can find the last possible candidate window.

Thus, given a valid window Pe[i · · · j], we use binary
span and shift operations to find candidate windows.

– Binary span: As shown in Fig. 10, if p j − pi + 1 ≤ �e,
we first find x by doing a binary search between j and
i + �e − 1, where x satisfies px − pi + 1 ≤ �e and
px+1 − pi +1 > �e, and then directly span to Pe[i · · · x].

– Binary shift: As shown in Fig. 11, if p j − pi +1 > �e, we
find mid by doing a binary search between i and j where

mid satisfies
(

p j + (mid − i)
) − pmid + 1 ≤ �e and(

p j + (mid − 1 − i)
) − pmid−1 + 1 > �e. If pmid+ j−i −

pmid +1 > �e, we iteratively do the binary shift operation
between mid + 1 and mid + 1 + j − i . On the contrary,
if p j − pi + 1 ≤ �e, we shift to a new valid window
Pe[(i + 1) · · · (j + 1)].

Given a valid window Pe[i · · · j], the binary shift can skip
unnecessary valid windows (non-candidate windows), such
as Pe[(i+1) · · · (j+1)], . . . , Pe[(mid−1) · · · (mid−1+ j−
i)], as proved in Lemma 4. For example, consider the position
list in Fig. 12. Suppose τ = 2. Tl = 4, |e4| = 8,�e4 = 10.
Consider the first valid window Pe4 [1 · · · 4]. The shift oper-
ation shifts it to Pe4 [2 · · · 5], Pe4 [3 · · · 6], · · · , Pe4 [6 · · · 9],
and checks whether they are candidate windows. The binary
shift operation can directly shift it to Pe4 [3 · · · 6] and then to
Pe4 [6 · · · 9]. Thus it skips many valid windows.

Lemma 4 Given a valid window Pe[i · · · j] with p j − pi +
1 > �e, if

(
p j + (mid − i)

)−pmid + 1 ≤ �e and(
p j +(mid −1)− i

)− pmid−1 +1 > �e, Pe[(i +1) · · · (j +
1)], . . . , Pe[(mid − 1) · · · ((mid − 1) + j − i

)] are not can-
didate windows.

Proof We prove it by contradiction. Suppose there exists
a valid window Pe[k · · · (j + k − i)](i ≤ k ≤ mid −
1), Pe[k · · · (j + k − i)] is a candidate window. That is
p j+k−i − pk +1 ≤ �e. As p j +k −i ≤ p j+k−i , p j +k −i −
pk +1 ≤ �e. Thus p j +k−i +(mid −1−k)−(pk +(mid −
1−k))+1 ≤ �e, and p j +(mid−1)−i−(pmid−1)+1 ≤ �e.
This contradicts with p j +(mid −1)−i − pmid−1 +1 > �e.
Thus Pe[(i +1) · · · (j +1)], . . . , Pe[(mid−1) · · · (j +mid−
1 − i)] are not candidate windows. �

123

Framework for entity extraction

Fig. 12 An example for binary
span and shift

The binary span operation directly spans to Pe[i · · · x] and
has two advantages. Firstly, in many applications, users want
to identify the best similar pairs (sharing common tokens as
many as possible), and the binary span can efficiently find
such substrings. Secondly, we do not need to find candidates
of e for Pe[i · · · (j +1)], . . . , Pe[i · · · x] one by one. Instead,
since there may be many candidates between lo = p j −
�e + 1 and up = pi+x− j + �e − 1, we find them in a
batch manner. We group the candidates based on their token
numbers. Entities in the same group have the same number
of tokens. Consider the group with g tokens, suppose Tg is
the threshold computed using |e| and g. If |Pe[i · · · x]| < Tg ,
we prune all candidates in the group.

We use the two binary operations to replace the shift and
span operations to skip valid windows. We devise an algo-
rithm to find candidate windows using the two operations as
illustrated in Fig. 13. It first initializes the first valid window
(line 2–line 4). Then, it uses the two binary operations to
extend the valid window until reaching the last valid win-
dow (line 3). If its token number is no larger than �e, we
do a binary span operation by calling its subroutine Bina-
rySpan (line 6) and do a shift operation (line 7); other-
wise calling its subroutine BinaryShift (line 8). BinaryS-
pan does a binary search to find the last possible candi-
date window starting with pi (lines 3-6). Then, it retrieves

the candidate windows (line 8). BinaryShift does a binary
search to find the first possible candidate window after pi .
Iteratively, our method finds all candidate windows. Fig-
ure 12 illustrates an example to walk through our algo-
rithm.

Complexity of the improved single-heap-based method
Different from the basic single-heap-based method, the
improved method does not count the occurrence number
using the array. Instead, for each position list Pe, it finds
candidate windows. For any list Pe, in the worst case, its
sublists with sizes between ⊥E and �E are candidate win-
dows. Thus, the time complexity for finding its candidate
windows is |Pe| ∗ �E . The method requires to find candi-
date windows for each position list, and the sum of lengths
of position lists is the sum of lengths of inverted lists, and
thus, the time complexity of finding candidate windows using
the improved method is O(N ∗�E). Based on the candidate
windows, it extends the candidate windows to find candidates
and the complexity is the number of candidates.

4.3 The Single algorithm

In this section, we propose a single-heap-based algorithm,
called Single, to efficiently find all answers.

123

D. Deng et al.

Algorithm 1: Find Candidate Windows
Input: e: An entity; Pe: Position list of e on the heap;

Tl: Threshold; e: The upper bound of token
numbers;
begin1

i = 1;2
while i ≤ |Pe| − Tl + 1 do3

j = i + Tl − 1;4
if pj − pi + 1 e then5

BinarySpan(i, j);6
i = i + 1; /* shift to the next window */7

else i = BinaryShift(i, j);8

end9

Procedure BinarySpan(i, j)
Input: i: the start point; j: the end point;
begin1

lower = j; upper = i + e − 1 ;2
while lower ≤ upper do3

mid = (upper + lower)/2 ;4
if pmid − pi + 1 > e then upper = mid − 1;5
else lower = mid + 1;6

mid = upper ;7
Find candidate windows in D[i · · · mid];8

end9

Procedure BinaryShift(i, j)
Input: i: the start point; j: the end point
Output: i: the new start point;
begin1

lower = i; upper = j;2
while lower ≤ upper do3

mid = (lower + upper)/2 ;4

if pj + (mid − i) − pmid + 1 > e then5
lower = mid + 1;6

else upper = mid − 1;7

i = lower; j = i + Tl − 1;8
if pj − pi + 1 > e then i = BinaryShift (i, j);9
else return i;10

end11

Fig. 13 Algorithm: Find candidate windows

We first construct an inverted index for all entities in the
given dictionary E . Then, for the document D, we get its
tokens and corresponding inverted lists. Next, we construct a
single heap on top of inverted lists of tokens. We use the heap
to generate entities in ascending order. For each entity e, we
get its position list Pe. If |Pe| < Tl , we prune e based on lazy-
count pruning; otherwise we use the two binary operations
to find candidate windows. Then, based on the candidate
windows, we generate candidate pairs. Finally, we verify the
candidate pairs and get the final results. Figure 14 gives the
pseudo-code of the Single algorithm.

The Single algorithm first constructs an inverted index
for predefined entities (line 2), and then tokenizes the docu-
ment, gets inverted lists (line 3), and constructs a heap (line 4).
Single uses 〈ei , pi 〉 to denote the top element of the heap,

where ei is the current minimal entity and pi is the position
of the inverted list from which ei is selected. Single con-
structs a position list Pe to keep all the positions of inverted
lists in the heap that contain e (line 6). Then, for each top
element 〈ei , pi 〉 on the heap, if ei = e, we add pi into Pe

(line 8–line 9), where e is the last popped entity from the
heap; otherwise Single checks the position list as follows.
Single derives a threshold Tl for entity e based on the sim-
ilarity function and threshold. If |Pe| ≥ Tl , there may exist
candidate pairs. Single generates candidate windows based
on Algorithm 1 (line 13) and finds candidate pairs based on
candidate windows (line 14). Single adjusts the heap to gen-
erate candidates for the next entity (line 16). Finally, Single
verifies the candidates to get the final results (line 17).

Next, we give a running example to walk through our algo-
rithm. Consider the entities and document in Table 1. We fist
construct a single min-heap (Fig. 5). Then, we adjust the heap
to generate the position list for each entity. Consider the posi-
tion list for entity e4 (“venkatesh”) in Fig. 12. Suppose
τ = 2. |e4| = 8, ⊥E = 6,�E = 12,⊥e4 = 6,�e4 =
10, Tl = 4. We use the binary shift and span operations to
get candidate windows (Pe[6 · · · 10] and Pe[7 · · · 10]), and
then generate candidate pairs based on the candidate win-
dows (e.g., 〈D[58, 9]=“venkaee sh”, e4=“venkatesh”〉).
Finally we verify the candidates to get the final answers.

4.4 Correctness and completeness

In this section, we prove the correctness and completeness
of the Single algorithm as stated in Theorem 1.

Theorem 1 The Single algorithm extracts all similar sub-
strings from the document correctly and completely.

Proof We first prove the Single algorithm finds answers
completely. That is given a similar substring and entity pair
〈s, e〉, the Single algorithm can find this pair as a result.
As s and e are similar, based on Lemma 1, |e ∩ s| ≥ Tl .
For the position list Pe, we have |Pe| ≥ |e ∩ s| ≥ Tl .
Thus, the position list Pe can pass the lazy-count prun-
ing and the Single algorithm will find its candidate win-
dows. As s and e are similar, based on Lemma 2 we have
⊥e ≤ |s| ≤ �e. Without loss of generality, suppose Pe[i]
and Pe[j] are the first and last common token positions of s
and e. The Single algorithm must find Pe[i . . . j] as a can-
didate window because Tl ≤ |Pe[i . . . j]| ≤ |s| ≤ �e. In the
verification stage, the Single algorithm must find 〈s, e〉 as a
result. Thus, the Single algorithm satisfies the completeness
property.

Next, we prove the correctness of the Single algorithm.
That is all the substring and entity pairs found by the Sin-
gle algorithm must be similar pairs. As the Single algo-
rithm has a verification stage which only outputs those sim-

123

Framework for entity extraction

Algorithm 2: Single Algorithm
Input: A dictionary of entities E = {e1, e2, . . . , en};

A document D;
A similarity function and a threshold;

Output: s, e s and e are similar for the function
and threshold}, where s is a substring of D

and e ∈ E.
begin1

Tokenize entities in E and construct an inverted2
index;
Tokenize D and get inverted lists of tokens in D;3
Construct a heap H on top of inverted lists of D;4
e is the top element of H; /* keep the current5
entity*/
Initialize a position list Pe = φ;6

while ei, pi = H.top ! = φ do7
if ei == e then8

Pe∪ = {pi}; /* ei is the new top entity. */9

else10
Derive the threshold Tl for entity e;11
if |Pe| ≥ Tl then12

Find candidate windows using13
Algorithm 1;
Get candidates using candidate14
windows;

e = ei; Pe = {pi}; // update the current15
entity

Adjust the heap;16

Verify candidate pairs;17

end18

Fig. 14 The Single algorithm

ilar pair, thus the Single algorithm satisfies the correctness
property. �

5 The hybrid method

Both of the multi-heap-based method and the single-heap-
based method require to construct heaps, access inverted lists
of tokens, and adjust heaps to count the occurrence num-
ber. The multi-heap-based method builds many heaps and
accesses some inverted lists multiple times (if the correspond-
ing tokens appear in different heaps). The single-heap-based
method constructs a single heap and accesses each inverted
list once. It is worth noting that the single-heap-based method
contains more tokens in the heap and the cost for each heap-
adjustment operation is more expensive than the multi-heap-
based method. Thus, there is a trade-off between the heap-
adjustment cost and the inverted-list-access cost.

To address this issue, we propose a hybrid method by
combining the two methods. The basic idea is to split the
document into multiple fragments and utilize the single-
heap based method on each fragment to generate candi-
date pairs. Obviously, the hybrid method can reduce the
heap-adjustment cost compared with the single-heap-based

Fig. 15 The hybrid method

method. If the fragments do not share many common tokens,
the hybrid method does not require to access many inverted
lists multiple times, and thus, it can achieve much better
performance than the single-heap-based and the multi-heap-
based methods. To achieve this goal, in this section, we
study how to judiciously partition the documents. We first
discuss how to quantify a partition method (Sect. 5.1) and
then devise algorithms to generate high-quality fragments
(Sects. 5.2, 5.3). Next we discuss some optimization tech-
niques (Sect. 5.4). Finally we introduce our hybrid algorithm
(Sect. 5.5).

5.1 Quantifying document fragmentation strategies

Since there are many document fragmentation strategies, we
discuss how to quantify them. For ease of presentations, we
first introduce some notations. We first tokenize the docu-
ment D and get a list of tokens. For each token, we retrieve
the corresponding inverted list. We use token[i] to denote
the i-th token, and IL[i] to denote the inverted list of the
i-th token. Then, we split the document D into n fragments
D1, D2, . . . , Dn as shown Figure 15. Next, for each fragment
Di , we build a min-heap on top of its tokens with non-empty
inverted lists. We utilize the single-heap based method on
each heap to find candidate answers in Di . It is worth noting
that there are some valid substrings of D composed of tokens
in two adjacent fragments Di and Di+1. Obviously, we can-
not use either Di or Di+1 to find these valid substrings as
candidates. To avoid involving false negatives, two adjacent
fragments must share an overlap region with length �E − 1,
where �E is the maximum length of valid substrings (defined
in Sect. 2.3), because any substring with length larger than
�E cannot be a valid substring (see the definition of valid
substring in Sect. 2.3) and any valid substring with length
no longer than �E can be found in Di or Di+1. Next, we
analyze the time complexity of the hybrid method.

Without loss of generality, suppose the begin position of
tokens in Di is bi where b1 = 1. The end position of Di

is ti = bi+1 + �E − 2. To be consistent, we manually set
bn+1 = |D| − �E + 2. We also use k j to denote the number
of entities in IL[j], thus the number of entities in all inverted
lists of Di is

∑ti
j=bi

k j . Based on the complexity analysis in
Sects. 3.3 and 4.2, the time complexity for finding candidate

123

D. Deng et al.

Fig. 16 An example of the hybrid method

pairs from Di is

H(bi , ti) = |Di | + log(|Di |) ∗
ti∑

j=bi

k j +
ti∑

j=bi

k j ∗ �E , (1)

where the first one is the heap-construction cost, the second
one is the heap-adjustment cost and the third one is finding
the candidate windows cost.6

Thus, given a document fragment strategy with start posi-
tions b1, b2, . . . , bn , we can figure out the total cost C
needed to find candidate pairs from the document D, i.e.,
C = ∑n

i=1 H(bi , bi+1 + �E − 2). We want to find a frag-
ment strategy to minimize the cost. Next, we formally define
the optimal document fragmentation problem.

Definition 4 (Optimal Document Fragmentation) Given a
document D, a dictionary E , a similarity function and a sim-
ilarity threshold, the optimal document fragmentation prob-
lem is to find a list of begin positions F = {b1, b2 . . . bn}
to fragment the document D in order to minimize C =∑n

i=1 H(bi , bi+1 + �E − 2).

Next, we use an example to show our idea. Consider a doc-
ument “kabarati_dongxin_surauijt_chadhuri”
as shown in Fig. 16. If we use the single-heap based method
and only build one heap over the document, as |D| = 17,∑33

i=1 ki = 27 and �E = 12, the cost is H(1, 33) =
17 + log(17) ∗ 27 + 27 ∗ 12 = 451. If we split the document
into two fragments with start positions b1 = 1 and b2 = 7,
the total cost is H(1, 17) + H(7, 33) = (7 + log(7) ∗ 9 +
9 ∗ 12) + (11 + log(11) ∗ 19 + 19 ∗ 12) = 445. Thus, the
hybrid method can improve the performance.

5.2 Optimal algorithm to document fragmentation

In this section, we propose a dynamic programing algorithm
to solve the optimal document fragmentation problem. For

6 Notice that we do not consider finding candidates from candidate
windows as such cost is same for any strategy.

ease of presentation, we first given some notations. We use
H(p, q) to denote the cost needed to find candidate pairs
from fragment D[p . . . q] by utilizing the single-heap based
method. We use C(p) to denote the minimum cost needed to
find all candidate pairs from D[1 . . . p]. Thus, C(|D|) is the
minimum cost needed to find candidate pairs from D. Next,
we discuss how to calculate the minimum cost C(t) which is
the minimum cost to generate optimal document fragments
before the t-th token. Suppose the begin position of the last
fragment in D[1 . . . t] is b. Then, the cost of finding candidate
pairs from D[1 . . . t] is C(b + �E − 2) + H(b, t). Among
all possible value of b, we need to select the one with the
minimum cost and use it as the last begin position. As we
need to keep an overlap region with length �E −1, the value
of b cannot be larger than t − �E + 1. Thus, we have

C(t) = min
1≤b≤t−�E +1

(C(b + �E − 2) + H(b, t)
)
. (2)

Based on the begin position b with the minimum cost and
the positions in F(b − �E − 2) that achieves the optimal
fragmentation of the document D[1 . . . b −�E − 2], we can
get F(t). For t ≤ �E − 1, C(t) = 0 as there is no valid b
and we do not need to construct min-heap over D[1 . . . t]. By
initializing C(t ≤ �E − 1) = 0 and F(t ≤ �E − 1) = {1},
we can recursively find the optimal document fragmentation
strategy F(|D|) and its minimum cost C(|D|).

The pseudo code of the optimal document fragmentation
algorithm is shown in Fig. 17. It takes t as input which corre-
sponds to fragment document D[1 . . . t] and outputs the list
of begin positions F(t) to optimally fragment D[1 . . . t] with
its cost C(t). First, the algorithm checks if the list of begin
positions F(t) has been calculated. If yes, it directly returns
F(t) and the cost C(t) (Line 2). Otherwise, if t ≤ �E − 1, it
returns the initial value F(t) = {1} and C(t) = 0 (Lines 3).
Next, the algorithm finds the begin position b with minimum
cost among all possible values (Lines 4 to 6). Finally, the
algorithm merges {b} with F(b + �E − 2) to get F(t) and
returns it with the cost C(t) (Lines 7 to 9).

We continue the last example. �E = 12. To get the opti-
mal document fragment strategy, we initialize C(�E − 1 =

123

Framework for entity extraction

Algorithm 3: OptFragment
Input: t: A position to fragment document D[1 . . . t]
Output: F (t): begin position list to fragment D[1 . . . t];

C(t): minimum cost to find candidates in D[1 . . . t];
begin1

if F (t) is not empty then return F (t), C(t) ;2
if t E − 1 then return F (t) = {1}, C(t) = 0 ;3
for b = 1 to t E + 1 do4

F (b+ E−2),C(b+ E−2) =OptFragment(b+ E−2);5
if C(b + E − 2) + H(b, t) is minimum then6

F (t) = {b} ∪ F (b + E − 2);7
C(t) = C(b + E − 2) + H(b, t);8
return F (t), C(t) ;9

end10

Fig. 17 Algorithm: optimal document fragmentation

Fig. 18 An example of the OptFragment algorithm

11) = 0 and call OptFragment(t=33) to find b from the
range [1, t−�E +1 = 22] to minimize C(b+10)+H(b, 33).
We recursively call Algorithm 3 to figure out C(b + 10).
The results are shown in Fig. 18. The numbers in the matrix
are the value of H(b, t), and the formulas in the bottom are
gotten by Algorithm 3. We find that when b = 8, C(33) =
C(b+10)+H(b, 33) achieves minimum value. We add b = 8
into the begin position list F(33) and further find the opti-
mal strategy to fragment document D[1, 18]. Finally, we got
F(33) = {1, 8} which means we fragment the document
into two fragments D[1, 18] and D[8, 33] with minimum
cost C(33) = H(1, 18) + H(8, 33) = 158 + 285 = 443.

Complexity From the procedure OptFragment, we can
see that to get F(|D|) and C(|D|) we need to calculate all
F(t) and C(t) where �E − 1 ≤ t ≤ |D| − 1. To calculate
F(t) and C(t), we need to compare at least t − �E + 1
times to get the minimum cost. Thus, the time complexity is
O(|D|2). Note that we can index all

∑t
i=1 ki in O(|D|) time,

and it takes O(1) time to get any
∑t

i=b ki . In the algorithm,
we need to store C(t), F(t) and the value of

∑t
i=1 ki where

�E −1 ≤ t ≤ |D|. The space complexity is O(|D|2) as F(t)
is a list of begin positions and in worst case each position b
is a begin position which is stored in all F(t) where b ≤ t .

Algorithm 4: GreedyFragment
Input: D: the document to fragment;

ki: the number of elements in i-th inverted list;
Output: F : begin position list to fragment D;
begin1

F = {1}, b = 1, H(b, |D|) =FragmentCost(1, |D|);2
for b = 2 to |D E + 1 do3

if H(b, b + E−2) + H(b , |D|) < H(b, |D|) then4
F = F ∪ b , b = b ,5
H(b, |D|) =FragmentCost(b, |D|);

return F ;6

end7

Fig. 19 Algorithm: Greedy document fragmentation

5.3 Greedy algorithm to document fragmentation

For a document D with |D| tokens, the time and space com-
plexities of the optimal document fragmentation algorithm
are both O(|D|2). Typically, the length |D| of a document
may be rather large and the optimal document fragmenta-
tion algorithm is very expensive. To address this issue, we
propose an efficient greedy algorithm with O(|D|) time and
space complexity to fragment the document.

The greedy algorithm scans the document token by token
and tries to split the document into two fragments based
on the current token. For each token, if the total cost of
finding candidates from the two fragments is smaller than
the cost of finding candidates from the entire fragment, the
greedy algorithm adds the current token into begin posi-
tion list, splits the document into two fragments and next
greedily splits the next fragment. Formally, suppose the cur-
rent token position is b′ and the last begin position in F is
b. Note that the begin position of the first fragment must
be 1 and we initialize the begin position list F as {1} and
b = 1. Next, we calculate the time cost H(b, |D|) of find-
ing candidates from D[b . . . |D|] and the total time cost
H(b, b′ + �E − 2) + H(b′, |D|) of finding candidates from
the two fragments D[b . . . b′ +�E −2] and D[b′ . . . |D|] by
utilizing the single-heap based method. We add b′ into F if
and only if H(b, b′ + �E − 2) + H(b′, |D|) < H(b, |D|).
Finally, we get the list of begin positions F to fragment the
document D.

The pseudo code of the greedy document fragmentation
algorithm is shown in Fig. 19. The greedy algorithm first
initializes the begin position list as {1}, sets b = 1 and
calculates the cost of H(1, |D|)(Line 2). Next, it scans the
document D (Lines 3 to 5). For each position b′, it calcu-
lates the values H(b, b′ + �E − 2) and H(b′, |D|). If posi-
tion b′ can decrease the cost of finding candidate pairs from
D[b . . . |D|], it adds b′ into F , replaces b with b′ and calcu-
lates value of H(b, |D|)(Line 4). When the algorithm reaches
the end of the document, it returns the list of begin positions
F(Line 6).

123

D. Deng et al.

We continue the last example. We first add 1 into F , set b =
1 and calculate H(1, |D| = 33) = 451. Next, we traverse
b′ from 2 to |D| − �E + 1 = 22. For b′ = 2, we have
H(1, 12) + H(2, 33) = 140 + 416 = 556 > 451. Next,
we set b′ = 3. We continue this procedure and for b′ =
7 we have H(1, 17) + H(7, 33) = 140 + 304 = 444 <

H(1, 33) = 451. We add b′ = 7 into F , split the document
into two fragments, set b = 7, calculate H(b = 7, 33) = 304
and continue to fragment D[7, 33]. Finally, we have F =
{1, 7}, and thus we fragment the document into two fragments
D[1, 17] and D[7, 33] with cost 444.

Complexity We can easily deduce that the time complexity
and space complexity of the greedy algorithm to fragment
documents are both O(|D|).

5.4 Optimization techniques

The above two document fragmentation algorithms use �E

as an upper bound of lengths of valid substrings. We find
that the size of an overlap region can be reduced to �e and
thus we can further decrease the cost of the heap-adjustment
operations. In addition, they have to scan all the inverted lists
in the overlap region twice to avoid false negatives. Using
a tighter bound, we only need to scan some of the inverted
lists in the overlap region twice.To achieve this goal, for each
inverted list IL[i] with position i , we compute the maximum
length �e for each entity e in the inverted list and store the
maximum one IL�

i = max{�e|e ∈ IL[i]} on the list.
Consider a begin position b of a document fragment.

Recall Sect. 5.1, we deduce its overlap region as D[b, b +
�E − 2], and each inverted list in the overlap region must be
scanned twice by two adjacent heaps, to avoid false negatives.
However, we find that for any token token[i] in the overlap
region with the position i , if i −IL�

i +1 ≥ b, we do not need
to add it into the former heap. This is because for any similar
string pair 〈s, e〉, where s is a substring of D containing the
token token[i] and e is an entity in the inverted list IL[i]
which also contains token[i], all their common tokens can
be found in the latter heap, as |s| ≤ �e ≤ IL�

i ≤ i − b + 1
(i.e. the begin position of |s| is no smaller than b, which is the
start position of the latter heap). Thus, we only need to scan
the inverted list of token[i] once in the latter heap and any
similar pair 〈s, e〉 that shares the common token token[i]
can be found in the latter heap. We also have that for any
inverted list IL[i] in the overlap region D[b, b + �E − 2],
if i + IL�

i − 1 ≤ b + �E − 2, we do not need to add it into
the latter heap as for any similar pair 〈s, e〉 sharing the token
token[i], i +|s|−1 ≤ i +�e −1 ≤ i +�p −1 ≤ b+�E −2
(i.e., the end position of s cannot be larger than i + �E − 2,
which is the end position of the former heap).

Given start and end positions b, t , we only need to select
some tokens to construct the heap based on the tighter bound.
The algorithm is shown in Fig. 20. The algorithm uses L

Algorithm 5: ListSelection
Input: b, t: the begin and end positions of the

fragment;
Output: L: the list of inverted lists selected to

construct the heap;
begin1

L = {b + E − 1, b + E , . . . , t E + 1};2
for i = b to b + E − 2 do3

if i + ILi − 1 > b + E − 2 then4
L = L ∪ i ;5

for i = t E + 2 to t do6
if i − ILi + 1 < t E + 2 then7

L = L ∪ i ;8

return L;9

end10

Fig. 20 Algorithm: select inverted lists to construct a heap

to store all the inverted lists in the fragment D[b . . . t] to
construct the heap. First, it initializes L as {b + �E − 1, b +
�E , . . . , t − �E + 1}(Line 2). Next, it checks the inverted
lists in the overlap region and only adds those inverted list
IL[i] which satisfies i + IL�

i − 1 < b + �E − 2 or i −
IL�

i +1 < t −�E +2 into L(Lines 3 to 5 and Lines 6 to 8).
Note that here b + �E − 2 is the end position of previous
fragment and t−�E+2 is the begin position of next fragment.
Finally, it returns the list L of inverted lists to construct the
heap(Line 9).

We still use the example in Sect. 5.1. Suppose, we split
the document into two fragments D[1, 18] and D[8, 33]. We
need to build two heaps over the two fragments. For fragment
D[1, 18], we invoke the procedure ListSelection(1,
18) to select the inverted lists to construct the heap. We
first initialize L as {1, 2, . . . , 7}. Next, we traverse p from
8 to 18. For i = 8, we have IL�

i = 0 and i − IL�
i =

8 ≥ t − �E + 2 = 8. Thus, we do not add the eighth
inverted list into L . For i = 18, we have IL�

i = 11 and
i −IL�

i +1 = 8 ≥ t −�E +2 = 8. Thus, we also do not add
this inverted list into L . Finally, we return L = {1, 2, . . . , 7}
for fragment D[1, 18].

Removing duplicate results There may be some duplicate
result pairs between two adjacent heaps. To remove these
duplicate results, we only need to use the begin position b of
the latter heap as a bound of the start positions of substrings
found by the former heap. That is for the former heap we only
return those candidate substrings with start position smaller
than b.

5.5 The hybrid algorithm

In this section, we propose a hybrid algorithm to efficiently
find all answers. Similar to the single-heap-based algorithm,
we first build an inverted index for the given dictionary E ,
and get the tokens and corresponding inverted lists of the doc-

123

Framework for entity extraction

Algorithm 6: The Hybrid Algorithm
Input: Same as Algorithm 2
Output: Same as Algorithm 2
begin1

/* Same as line 2 to 3 in Algorithm 2 */
Fragment the document D using GreedyFragment2
algorithm and get the list F of begin positions;
for two adjacent begin positions b and b in F do3

L = ListSelection(b, b + E − 2);4
Construct a heap H on top of the lists in L;5
/* Same as line 5 to 17 in Algorithm 2 */

end6

Fig. 21 The hybrid algorithm

ument D. Next, we split the document D into multiple frag-
ments. For each fragment, we select a list of inverted lists and
build a heap on top of them. Finally, we use the single-heap-
based algorithm to find results in the fragment. Figure 21
gives the pseudo-code of the hybrid algorithm (Hybrid).

The Hybrid algorithm is similar to the Single algo-
rithm. Instead of constructing a single heap on top of the
entire document, the Hybrid algorithm invokes the procedure
GreedyFragment to fragment the document D and gets a
list F of begin positions of the fragments (Line 16). Then, for
each fragment D[b, b′+�E −2], where b and b′ are two adja-
cent begin positions in F , the Hybrid algorithm selects a list L
of inverted lists using procedure ListSelection(Line 3
to 4). Finally, the Hybrid method builds a heap over the
inverted lists in L and utilizes the Single algorithm to find
results in this fragment (Line 5).

Next, we give a running example to walk through the
Hybrid algorithm. Consider the entities and document in
Table 1. We first build an inverted index for the given dic-
tionary as shown in Fig. 1. Then, we fragment the doc-
ument using the GreedyFragment algorithm and get
a list of begin positions F = {1, 18, 85, 87}. Next, for
each of the three fragments D[1, 28], D[18, 95], D[85, 97]
and D[87, 119], we invoke procedure ListSelection to
select inverted lists and build a heap on top of the selected
inverted lists. Finally, we utilize the Single algorithm to get
the results.

6 Experiments

We have implemented our proposed techniques and con-
ducted experiments to evaluate our methods. The objective
of the experiments is to measure the performance, and we
report results in this section.

Experimental setting We compared our algorithms with
state-of-the-art methods NGPP [31] (the best method for
edit distance) and ISH [4] (the best method for jaccard sim-
ilarity and edit similarity). We downloaded the binary codes

Table 4 Datasets

Datasets & details Cardinality len tokens

DBLP Dict, Author 100,000 21.1 2.77

DBLP Docs, Bibliography 10,000 123.3 16.99

PubMed Dict, Title 100,000 52.96 6.98

PubMed Docs, Record 10,000 235.8 33.6

WebPage Dict, Title 100,000 66.89 8.5

WebPage Docs, Page 1,000 8949 1268

of NGPP [31] from “Similarity Joins” project website7 and
implemented ISH by ourselves. The algorithms were imple-
mented in C++ and compiled using GCC 4.2.4 with -O3 flag.
All the experiments were run on a Ubuntu machine with an
Intel Core 2 Quad X5450 3.0 GHz processor and 4 GB mem-
ory.

Datasets We used three real datasets, DBLP,8 PubMed,9

and ACM WebPage.10 DBLP is a computer science bibli-
ography dataset. We selected 100,000 author names as enti-
ties and 10,000 bibliographies as documents. PubMed is a
biomedical literature citation dataset. We selected 100,000
paper titles as entities and 10,000 publication records as doc-
uments. WebPage is a set of ACM web pages. We crawled
100,000 paper titles as a dictionary, and 1,000 web pages
as documents (thousands of tokens). Table 4 illustrates the
dataset statistics (where len denotes the average length and
token denotes the average token number). We did not con-
sider different attributes in the entities and documents, and
each entity in the dictionary is just a string.

6.1 Multi-heap versus single heap

In this section, we compared the multi-heap-based method
with the single-heap-based method (without using pruning
techniques in Sect. 4). We tested the performance of the
two methods for different similarity functions on the three
datasets. Fig. 22 shows the experimental results.

We see that the single-heap-based method outperforms
the multi-heap-based method by 1–2 orders of magnitude,
and even 3 orders of magnitude in some cases. For exam-
ple, on the DBLP dataset with edit-distance threshold τ = 3,
the multi-heap-based method took more than 10,000 s and the
single-heap-based method took about 180 s. On the PubMed
dataset with eds similarity threshold δ = 0.9, the multi-
heap-based method took more than 14,000 s and the single-

7 http://www.cse.unsw.edu.au/~weiw/project/simjoin.html.
8 http://www.informatik.uni-trier.de/~ley/db.
9 http://www.ncbi.nlm.nih.gov/pubmed.
10 http://portal.acm.org.

123

http://www.cse.unsw.edu.au/~weiw/project/simjoin.html
http://www.informatik.uni-trier.de/~ley/db
http://www.ncbi.nlm.nih.gov/pubmed
http://portal.acm.org

D. Deng et al.

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold τ

Multi-Heap
Single-Heap

(a) ed (DBLP)

 100

 1000

 10000

1 0.95 0.9 0.85

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold δ

Multi-Heap
Single-Heap

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

 100000

1 0.95 0.9 0.85

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold δ

Multi-Heap
Single-Heap

(c) eds (PubMed)

Fig. 22 Performance comparison of multi-heap-based methods and single-heap-based methods

heap-based method took only 600 s. There are two reasons
that the single-heap-based method is better than the multi-
heap-based method. Firstly, the multi-heap-based method
scans each inverted list of the document many times and the
single-heap-based method only scans them once. Secondly,
the multi-heap-based method constructs larger numbers of
heaps and does larger numbers of heap adjustment than the
single-heap-based method. It is worth noting that the y-axis
of Fig. 22 is logarithmic which leads to the single-heap-
based method seems not asymptotically more efficient than
the multi-heap-based method. In addition, the overall perfor-
mance also depends on the number of candidates that require
to be verified (especially when there are large numbers of
candidates). With the decrease of similarity thresholds, the
number of candidates increases and the verification cost
also increases, and thus, the performance gap between two
methods becomes smaller. As the single-heap-based method
outperforms the multi-heap-based method, we focus on the
single-heap-based method in the remainder of the experi-
mental comparison.

6.2 Evaluating pruning techniques for the
single-heap-based method

In this section, we tested the effectiveness of our pruning
techniques. We first evaluated the number of candidates by
applying different pruning techniques to our algorithm (lazy-
count pruning, bucket-count pruning, and binary span and

shift pruning). As batch-count pruning is a special case of
binary span and shift pruning, we only show the results for
binary span and shift pruning. In the paper, the number of
candidates refers to the number of non-zero values in the
occurrence arrays, which need to be verified. Figure 23 gives
the results. In the figure, we tested edit distance on the DBLP
dataset, jaccard similarity on WebPage dataset, and edit
similarity on PubMed dataset. Note that in the figures, the
results are in 10x formate. For example, if there are 100 mil-
lion candidates, the number in the figure is 8 (108 = 100M).
In the paper, we tuned the parameters for different our
method used parameter q for the gram-based method and
reported the best performance, where q = 16, 8, 5, 4, 3 for
τ = 0, 1, 2, 3, 4 respectively for edit distance on DBLP and
q = 26, 11, 7, 5, 4 for δ = 1, 0.95, 0.9, 0.85, 0.8 edit simi-
larity on PubMed.

We observe that our proposed pruning techniques can
prune large numbers of candidates. For example, on the
DBLP dataset, for τ = 3, the method without any pruning
techniques involved 11 billion candidates, and the lazy-count
pruning reduced the number to 860 million. The bucket-
count pruning further reduced the number to 600 million.
The binary span and shift pruning had only 200 million can-
didates. On the WebPage dataset, for δ = 0.9, the binary
span and shift pruning reduced the number of candidates from
10 billion to 35. On the PubMed dataset, for δ = 0.85, the
binary span and shift pruning reduced the number of candi-
dates from 180 billion to 120 million. The main reason is that
we compute an upper bound of the overlap of an entity and a

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3#
of

 C
an

di
da

te
s

(1
0x)

Threshold τ

None
Lazy

Bucket
Binary

(a) ed (DBLP)

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 0.95 0.9 0.85#
of

 C
an

di
da

te
s

(1
0x)

Threshold δ

None
Lazy

Bucket
Binary

(b) jac (WebPage)

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 0.95 0.9 0.85#
of

 C
an

di
da

te
s

(1
0x)

Threshold δ

None
Lazy

Bucket
Binary

(c) eds (PubMed)

Fig. 23 Number of candidates with different pruning techniques

123

Framework for entity extraction

 0.1

 1

 10

 100

 0 1 2 3

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold τ

None
Lazy

Bucket
Binary

(a) ed (DBLP)

 10

 100

 1000

1 0.95 0.9 0.85

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold δ

None
Lazy

Bucket
Binary

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

1 0.95 0.9 0.85

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold δ

None
Lazy

Bucket
Binary

(c) eds (PubMed)

Fig. 24 Performance comparison with different pruning techniques

substring, and if the bound is smaller than the overlap thresh-
old, we prune the substring. If for any substring, the bound
of an entity is smaller than the threshold, we prune the entity.
This confirms the superiority of our pruning techniques.

Next, we evaluated the performance benefit of the prun-
ing techniques. Figure 24 shows the results. We observe
that the pruning techniques can improve the performance.
For instance, on the DBLP dataset, for τ = 3, the elapsed
time of the method without any pruning technique was 180 s,
and the lazy-count pruning decreased the time to 43 s. The
binary span and shift pruning reduced the time to 25 s. On
the PubMed dataset, for δ = 0.9, the pruning techniques
can improve the time from 600 to 8 s. This shows that our
pruning techniques can improve the performance.

6.3 Hybrid versus single heap

In this section, we evaluate the Hybrid method and
compare it with the Single algorithm. We implemented
three Hybrid methods, the Hybrid-Optimalmethod, the
Hybrid-Greedy method, and the Hybrid-Greedy+
method. The Hybrid-Optimal method uses the opti-
mal fragment algorithm OptFragment to fragment doc-
uments and the other two methods utilizes the greedy
algorithm GreedyFragment to fragment documents. In
addition, the Hybrid-Greedy+ method incorporates the
ListSelection algorithms to avoid scanning the inverted
lists in overlap regions twice while the other two methods do
not use this feature.

As the hybrid method is only effective for long docu-
ments, for each dataset we concatenated 100 documents into
a new document and conducted approximate entity extrac-
tion on the new documents to show the effectiveness of
the Hybrid method. Figure 25 shows the filtering times of
each method. We have the following observations. First, the
three hybrid methods outperformed the single-heap-based
method. For example, on the DBLP dataset with edit-distance
threshold τ = 4, the Single algorithm took 800 s, while
the Hybrid-Optimal method, the Hybrid-Greedy
method, and the Hybrid-Greedy+ method took 585, 660

and 280 s respectively. This is because the hybrid meth-
ods can decrease the heap sizes and thus reduce the heap-
adjustment cost. Second, the Hybrid-Greedy+ method
outperformed the Hybrid-Optimal method and the
Hybrid-Greedymethod, because theListSelection
algorithm can avoid scanning the inverted lists in the over-
lap region twice. Third, the Hybrid-Greedy method had
good approximation quality and achieved comparable per-
formance with the Hybrid-Optimal method.

We next compared the partition time of the four methods.
Figure 26 shows the results. As the Single method has no
partition stage, its partition time was 0. For the Hybrid meth-
ods, the Hybrid-Optimal method is much worse than
the other two methods. This is because the OptFragment
algorithm requires to find the optimal fragments, and the
time complexity of the OptFragment algorithm is very
high. The partition time of the Hybrid-Greedy+ method
is a little longer than the Hybrid-Greedy method, as the
ListSelection algorithm requires to select the inverted
lists in the overlap regions. For example, on the Web-
Page dataset with Jaccard-similarity threshold δ = 0.9,
the Hybrid-Optimal method took about 6,000 s while
theHybrid-Greedymethod and theHybrid-Greedy+
method only took about 0.3 and 1 s.

Finally, we tested the overall extraction time, includ-
ing the partition time, the filtering and verification time.
Figure 27 shows the overall extraction time. Since the
Hybrid-Optimal method is rather slow as the partition
time is too long, we do not show its overall extraction time
here. We can see from the figure that theHybrid-Greedy+
method has the best performance and the Hybrid-Greedy
method beats the Single method. For example, on the
PubMed dataset with edit-similarity threshold δ = 0.8, the
Single algorithm and theHybrid-Greedy algorithm took
2,900 and 2,200 s to extraction entities respectively while
the Hybrid-Greedy+ algorithm only took 1,100 s. This
is because the Hybrid-Greedy+ method avoids scan-
ning some inverted lists in the overlap region twice and the
Hybrid-Greedy algorithm avoids some heap-adjustment
operations.

123

D. Deng et al.

 0.1

 1

 10

 100

 1000

 10000
 100000

 0 1 2 3 4

F
ilt

er
in

g
T

im
e

(s
)

Threshold τ

Single-Heap
Hybrid-Optimal
Hybrid-Greedy

Hybrid-Greedy+

(a) ed (DBLP)

 0.1

 1

 10

 100

 1000

 10000

 0.8 0.85 0.9 0.95 1

F
ilt

er
in

g
T

im
e

(s
)

Threshold δ

Single-Heap
Hybrid-Optimal
Hybrid-Greedy

Hybrid-Greedy+

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.8 0.85 0.9 0.95 1

F
ilt

er
in

g
T

im
e

(s
)

Threshold δ

Single-Heap
Hybrid-Optimal
Hybrid-Greedy

Hybrid-Greedy+

(c) eds (PubMed)

Fig. 25 Filtering time of the Single method and the Hybrid methods

 0.1

 1

 10

 100

 1000

 10000
 100000

 1e+006

 0 1 2 3 4

P
ar

tit
io

n
T

im
e

(s
)

Threshold τ

Single-Heap
Hybrid-Optimal
Hybrid-Greedy

Hybrid-Greedy+

(a) ed (DBLP)

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+006
 1e+007

 0.8 0.85 0.9 0.95 1

P
ar

tit
io

n
T

im
e

(s
)

Threshold δ

Single-Heap
Hybrid-Optimal
Hybrid-Greedy

Hybrid-Greedy+

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0.8 0.85 0.9 0.95 1

P
ar

tit
io

n
T

im
e

(s
)

Threshold δ

Single-Heap
Hybrid-Optimal
Hybrid-Greedy

Hybrid-Greedy+

(c) eds (PubMed)

Fig. 26 Partition time of the Single method and the Hybrid methods

 0.1

 1

 10

 100

 1000

 0 1 2 3 4

O
ve

ra
ll

T
im

e
(s

)

Threshold τ

Single-Heap
Hybrid-Greedy

Hybrid-Greedy+

(a) ed (DBLP)

 0.1

 1

 10

 100

 1000

 10000

 0.8 0.85 0.9 0.95 1

O
ve

ra
ll

T
im

e
(s

)

Threshold δ

Single-Heap
Hybrid-Greedy

Hybrid-Greedy+

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

 0.8 0.85 0.9 0.95 1

O
ve

ra
ll

T
im

e
(s

)

Threshold δ

Single-Heap
Hybrid-Greedy

Hybrid-Greedy+

(c) eds (PubMed)

Fig. 27 Overall time of the Single method and the Hybrid methods

6.4 Comparison with state-of-the-art methods

In this section, we compared our algorithm with state-of-the-
art methods NGPP [31] (which only supports edit distance)
and ISH [4] (which supports edit similarity and jaccard sim-
ilarity). As state-of-the-art methods are rather slow for long
documents, we only show the performance of the Single
method. In the figures, we used Faerie to denote our single-
heap-based method.

We tuned the parameters of NGPP and ISH (e.g., pre-
fix length of NGPP) to make them achieve the best per-
formance. Figure 28 shows the results. We see that Faerie
achieved the highest performance. Especially Faerie out-
performed ISH by 1-2 orders of magnitude for edit simi-
larity and jaccard similarity. For example, on the PubMed
with edit-similarity threshold δ = 0.9, the elapsed time of
ISH was 1,000 s. Faerie reduced the time to 8 s. This is
because Faerie used the shared computation across over-

lapped tokens. In addition, our pruning techniques can prune
large numbers of unnecessary valid substrings and reduce
the number of candidates. Although NGPP achieved high
performance for smaller edit-distance thresholds, it is inef-
ficient for larger edit-distance thresholds. The reason is that
it needs to enumerate neighbors of entities and an entity has
larger numbers of neighbors for larger thresholds. On jac-
card similarity, as each entity has a smaller number of tokens
(the average number is 8) and the thresholds Tl and �e for
different thresholds are nearly the same (Tl = 8 for δ = 1
and Tl = 10 for δ = 0.8), Faerie varied a little for different
Jaccard-similarity thresholds.

In addition, we compared index sizes of difference algo-
rithms. Note that NGPP had different index sizes for dif-
ferent edit-distance threshold τ , as NGPP uses τ to gen-
erate neighborhoods. The larger the edit-distance threshold,
the larger indexes are involved for the neighborhoods of an
entity, since an entity has larger numbers of neighbors for

123

Framework for entity extraction

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold τ

NGPP
Faerie

(a) ed (DBLP)

 0.1

 1

 10

 100

 1000

 10000

1 0.95 0.9 0.85 0.8

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold δ

ISH
Faerie

(b) jac (WebPage)

 0.1

 1

 10

 100

 1000

 10000

1 0.95 0.9 0.85 0.8

E
xt

ra
ct

io
n

T
im

e
(s

)

Threshold δ

ISH
Faerie

(c) eds (PubMed)

Fig. 28 Comparison with existing methods

larger thresholds. On the DBLP dataset, for τ = 3, NGPP
consumed about 43 MB index size. The index size of Faerie
was only 7 MB (q = 4). This result consists with that
in [31]: the q-gram-based method has smaller index sizes
than the neighborhood-based method (NGPP). On Web-
Page, ISH involved about 18 MB index size for jaccard-
similarity threshold δ = 0.9 (its parameter k = 3) and Faerie
only used 4 MB.

6.5 Scalability with dictionary sizes

This section evaluates the scalability of our proposed method
Faerie (we use the single-heap-based method) on various
similarity functions. We varied the number of entities in the
dictionary and identified similar pairs from the document
collection in Table 4. Figure 29 shows the results for the five
similarity functions. We observe that our method scaled well
as the dictionary size increased. For example, on DBLP, for
τ = 3, Faerie took 6 s for 20,000 entities and 25 s for 100,000
entities. On WebPage, as each entity has a smaller number
of tokens, Faerie varied a little for different thresholds. On
PubMed, we evaluated edit similarity, dice similarity, cosine
similarity, using q-grams. For edit similarity, when δ = 0.85,
Faerie took 9 s for 20,000 entities and 48 s for 100,000 enti-
ties.

In addition, we also evaluated the index sizes as the dic-
tionary size increased. Table 5 shows the results. We see that
the index sizes of our method were very small and scaled
well as the number of entities increased.

6.6 Scalability with document length

In this section, we evaluated the scalability of our proposed
method Faerie by varying the document length (we used
our best algorithm Hybrid-Greedy+). We downloaded
a DNA dataset from NCBI 11 to conduct this experiment.
The dictionary contains 100,000 DNA segments with average
length 108. We use 100 DNA sequences as documents. To
evaluate the scalability of Faerie with document length, we

11 http://www.ncbi.nlm.nih.gov/genome.

fixed the size of dictionary and varied the average length
of documents from 200,000 to 1,000,000. The results are
shown in Fig. 30. We can see that Faerie scaled very well
as the average length of document increases. For example,
for edit distance threshold τ = 2, the extraction time for the
documents with average length 200,000, 400,000, 600,000,
800,000, and 1,000,000 were respectively 49, 98, 145, 197
and 246 s.

7 Related works

There have been some recent studies on approximate entity
extraction [1,4,5,9,10,23,26,31]. Deng et al. [10] proposed a
trie-based method for approximate entity extraction with edit
distance constraint. Wang et al. [31] proposed neighborhood-
generation-based methods for approximate entity extraction
with edit-distance thresholds. They first partition strings into
different partitions and guarantee that two strings are similar
only if there exist two partitions of the two strings, which have
an edit distance no larger than 1. Then, they generate neigh-
borhoods of each partition by deleting one character from
the partitions, and the edit distance between two partitions is
not larger than 1 only if they have a common neighbor. How-

Table 5 Scalability of index sizes

of Entities 20 k 40 k 60 k 80 k 100 k

(a) DBLP (q = 5)

Inverted Index (MB) 1.6 3.22 4.9 6.5 8.2

Heap+Array (KB) 4.5 4.5 4.5 4.5 4.5

(b) WebPage

Inverted Index (MB) 0.8 1.63 2.45 3.3 4.2

Heap+Array (KB) 38 38 38 38 38

(c) PubMed (q = 7)

Inverted Index (MB) 4.5 9.2 14.1 18.3 22.8

Heap+Array (KB) 7.2 7.2 7.2 7.2 7.2

123

http://www.ncbi.nlm.nih.gov/genome

D. Deng et al.

 0

 10

 20

 30

 2 4 6 8 10

E
xt

ra
ct

io
n

T
im

e
(s

)

Number of Entities (*10000)

τ=3
τ=2
τ=1
τ=0

(a) ed (DBLP)

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10

E
xt

ra
ct

io
n

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(b) jac (WebPage)

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10

E
xt

ra
ct

io
n

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(c) eds (PubMed)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 2 4 6 8 10

E
xt

ra
ct

io
n

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(d) dice (PubMed)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 2 4 6 8 10

E
xt

ra
ct

io
n

T
im

e
(s

)

Number of Entities (*10000)

δ=0.85
δ=0.9

δ=0.95
δ=1

(e) cos (PubMed)

Fig. 29 Scalability of performance for various similarity functions on different datasets

 0

 200

 400

 600

 800

 2 4 6 8 10

E
xt

ra
ct

io
n

T
im

e
(s

)

Average Document Length (*100000)

τ=5
τ=4
τ=3
τ=2
τ=1

Fig. 30 Scalability with document length

ever, this method cannot support the token-based similarity.
Chakrabarti et al. [4] proposed an inverted signature-based
hash-table for membership checking. They first selected top-
weighted tokens as signatures and encoded the dictionary as
a 0-1 matrix. Then, they built a matrix for the document and
used the matrix to find candidates. Lu et al. [26] proposed
signature-based inverted lists to improve [4] by using a tighter
threshold. However, this method cannot support edit distance.
In addition, Agrawal et al. [1] proposed to use inverted lists
for ad hoc entity extraction. Chandel et al. [5] studied the
problem of batch top-k search for dictionary-based exact
entity recognition. Chaudhuri et al. [9] proposed to expand
a reference dictionary of entities by mining large document
collections.

Different from existing works, we proposed a unified
framework to support various similarity functions [23]. Com-

pared with our previous work [23], the significant additions
in this extended manuscript are summarized as follows.

– We proposed a new hybrid algorithm by combining
the multi-heap-based method and the single-heap-based
method, which can reduce the filtering cost while keeping
the same pruning power. Sect. 5 was newly added.

– We conducted new experiments to evaluate the effective-
ness of our hybrid method and showed its performance
gain. Sect. 6.3 was newly added.

– We formally proved all the lemmas and theorems in the
paper.

Similarity search and join Many studies have been pro-
posed to address the approximate-string-search problem [2,
4,6,8,11,14,15,17,18,21,22,34] which finds similar strings
of a query string from a string collection, and the similarity-
join problem [2,3,7,12,13,24,25,27–30,32,33] which finds
similar string pairs from two string collections. Although we
can extend them to solve our problem, they are very ineffi-
cient, since they need to enumerate all valid substrings in the
document and cannot use the shared computation across over-
laps of substrings. Existing works (NGPP [31] and ISH [4])
have proved that the extraction-based methods outperform
similarity-join-based methods for the approximate entity-
extraction problem, and thus, we only compare with state-of-
the-art methods NGPP [31] and ISH [4]. In addition, there
have been many studies on estimating selectivity for approx-
imate string queries [16,19,20].

123

Framework for entity extraction

8 Conclusion

In this paper, we have studied the problem of approxi-
mate dictionary-based entity extraction. We proposed a uni-
fied framework to support various similarity functions. We
devised heap-based filtering algorithms to efficiently extract
similar entities from a document. We developed a single-
heap-based algorithm which can utilize the shared compu-
tation across overlaps of substrings by constructing a single
heap on top of inverted lists of tokens in the document and
scanning every inverted list only once. We proposed several
pruning techniques to prune large numbers of unnecessary
candidate pairs. We devised binary-search-based techniques
to improve the performance. We proposed a hybrid-based
algorithm to combine the single-heap-based algorithm and
the multi-heap-based algorithm to further enhance the perfor-
mance. We have implemented our proposed techniques and
tested our method on several real datasets. The experimental
results show that our method achieves high performance and
outperforms state-of-the-art studies significantly.

Acknowledgments This work was partly supported by the National
Natural Science Foundation of China under Grant No. 61272090 and
61373024, National Grand Fundamental Research 973 Program of
China under Grant No. 2011CB302206, Beijing Higher Education
Young Elite Teacher Project under Grant No. YETP0105, a project
of Tsinghua University under Grant No. 20111081073, Tsinghua-
Tencent Joint Laboratory for Internet Innovation Technology, the
“NExT Research Center” funded by MDA, Singapore, under Grant
No. WBS:R-252-300-001-490, and the FDCT/106/2012/A3.

References

1. Agrawal, S., Chakrabarti, K., Chaudhuri, S., Ganti, V.: Scalable ad-
hoc entity extraction from text collections. PVLDB 1(1), 945–957
(2008)

2. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact setsimilarity joins.
In: VLDB, pp. 918–929 (2006)

3. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity
search. In WWW, pp. 131–140 (2007)

4. Chakrabarti, K., Chaudhuri, S., Ganti, V., Xin, D.: An efficient filter
for approximate membership checking. In: SIGMOD Conference,
pp. 805–818 (2008)

5. Chandel, A., Nagesh, P. C., Sarawagi, S.: Efficient batch top-k
search for dictionary-based entity recognition. In: ICDE, pp. 28
(2006)

6. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and
efficient fuzzy match for online data cleaning. In: SIGMOD Con-
ference, pp. 313–324 (2003)

7. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for
similarity joins in data cleaning. In ICDE, pp. 5–16 (2006)

8. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of
fuzzy duplicates. In: ICDE, pp. 865–876 (2005)

9. Chaudhuri, S., Ganti, V., Xin, D.: Mining document collections
to facilitate accurate approximate entity matching. PVLDB 2(1),
395–406 (2009)

10. Deng, D., Li, G., Feng, J.: An efficient trie-based method for
approximate entity extraction with editdistance constraints. In:
ICDE, pp. 762–773 (2012)

11. Deng, D., Li, G., Feng, J., Li, W.-S.: Top-k string similarity search
with edit-distance constraints. In: ICDE, pp. 925–936 (2013)

12. Feng, J., Wang, J., Li, G.: Trie-join: a trie-based method for efficient
string similarity joins. VLDB J. 21(4), 437–461 (2012)

13. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukr-
ishnan, S., Srivastava, D.: Approximate string joins in a database
(almost) for free. In: VLDB, pp. 491–500 (2001)

14. Hadjieleftheriou, M., Chandel, A., Koudas, N., Srivastava, D.: Fast
indexes and algorithms for set similarity selection queries. In:
ICDE, pp. 267–276 (2008)

15. Hadjieleftheriou, M., Koudas, N., Srivastava, D.: Incremental
maintenance of length normalized indexes for approximate string
matching. In: SIGMOD Conference, pp. 429–440 (2009)

16. Hadjieleftheriou, M., Yu, X., Koudas, N., Srivastava, D.: Hashed
samples: selectivity estimators for set similarity selection queries.
PVLDB 1(1), 201–212 (2008)

17. Kim, M.-S., Whang, K.-Y., Lee, J.-G., Lee, M.-J.: ngram/ 2l: a
space and time efficient two-level n-gram inverted index structure.
In: VLDB, pp. 325–336 (2005)

18. Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and
selection queries. In: VLDB, pp. 199–210 (2006)

19. Lee, H., Ng, R.T., Shim, K.: Extending q-grams to estimate selec-
tivity of string matching with low edit distance. In: VLDB, pp.
195–206 (2007)

20. Lee, H., Ng, R.T., Shim, K.: Power-law based estimation of set
similarity join size. PVLDB 2(1), 658–669 (2009)

21. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for
approximate string searches. In: ICDE, pp. 257–266 (2008)

22. Li, C., Wang, B., Yang, X.: Vgram: Improving performance of
approximate queries on string collections using variable-length
grams. In: VLDB, pp. 303–314 (2007)

23. Li, G., Deng, D., Feng, J.: Faerie: efficient filtering algorithms
for approximate dictionary-based entity extraction. In: SIGMOD
Conference, pp. 529–540 (2011)

24. Li, G., Deng, D., Feng, J.: A partition-based method for string sim-
ilarity joins with edit-distance constraints. ACM Trans. Database
Syst. 38(2), 9 (2013)

25. Li, G., Deng, D., Wang, J., Feng, J.: Pass-join: a partition-based
method for similarity joins. PVLDB 5(3), 253–264 (2011)

26. Lu, J., Han, J., Meng, X.: Efficient algorithms for approximate
member extraction using signature-based inverted lists. In: CIKM,
pp. 315–324 (2009)

27. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates.
In: SIGMOD Conference, pp. 743–754 (2004)

28. Wang, J., Li, G., Feng, J.: Trie-join: efficient trie-based string simi-
larity joins with edit-distance constraints. PVLDB 3(1), 1219–1230
(2010)

29. Wang, J., Li, G., Feng, J.: Fast-join: an efficient method for fuzzy
token matching based string similarity join. In: ICDE, pp. 458–469
(2011)

30. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In: SIGMOD
conference, pp. 85–96 (2012)

31. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity
extraction with edit distance constraints. In: SIGMOD Conference
(2009)

32. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB 1(1), 933–
944 (2008)

33. Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k set similarity joins.
In: ICDE, pp. 916–927 (2009)

34. Xiao, C., Wang, W., Lin, X. and Yu, J.X.: Efficient similarity joins
for near duplicate detection. In: WWW (2008)

123

	A unified framework for approximate dictionary-based entity extraction
	Abstract
	1 Introduction
	2 A unified framework
	2.1 Problem formulation
	2.2 A unified framework
	2.3 Valid substrings

	3 Heap-based filtering algorithms
	3.1 An inverted index structure
	3.2 Multi-heap-based method
	3.3 Single-heap-based method

	4 Improving the single-heap-based method
	4.1 Pruning techniques
	4.2 Finding candidate windows efficiently
	4.3 The Single algorithm
	4.4 Correctness and completeness

	5 The hybrid method
	5.1 Quantifying document fragmentation strategies
	5.2 Optimal algorithm to document fragmentation
	5.3 Greedy algorithm to document fragmentation
	5.4 Optimization techniques
	5.5 The hybrid algorithm

	6 Experiments
	6.1 Multi-heap versus single heap
	6.2 Evaluating pruning techniques for the single-heap-based method
	6.3 Hybrid versus single heap
	6.4 Comparison with state-of-the-art methods
	6.5 Scalability with dictionary sizes
	6.6 Scalability with document length

	7 Related works
	8 Conclusion
	Acknowledgments
	References

